(‘:9/

Laﬁa?ese Ungversity
Faculty of Sciences
Dean

Master Thesis

In Order to Obtain the

Professional Master in

GIS and Data Science

Presented and Defended by:
Mohammad Ali Fneich

On November 15, 2022

Title:

Agricultural Land Assessment

Supervisor:

Dr. Kifah Raafat Tout

Reviewers:

Dr. Ghassan Karam Elnemr

Dr. Hassan Mohamad Tout

Lebanese University-Faculty of sciences Academic Year 2021-2022

ACKNOWLEDGMENTS

First and above all, | praise God, the almighty for providing me with this opportunity and
granting me the capability to proceed successfully. This thesis appears in its current form,
due to the assistance and guidance of several people. | would therefore like to offer my

sincere thanks to all of them.

I would like to express my special thanks of gratitude to my teacher Ms. Gretta Kelzi as well
as our supervisor of this master’s program Dr.Kifah Tout who gave me the golden
opportunity to do this wonderful project on the topic (Agricultural land assessment), which

also helped me in doing a lot of Research and I came to know about so many new things.

I give many thanks to the faculty of Sciences at Lebanese university, the department of
computer science, administration, staff, and lecturers for their kindness and cooperation
with me during my studies at the university. Not forgetting Esri Lebanon team at Khatib

and Alami for the hard training they offered during this master’s program.

Finally, my deep and sincere gratitude to my family for their continuous and unparalleled
love, help, and support. I am grateful to my sisters and my brother for always being there

for me.

ABSTRACT

Agriculture has great economic importance in each country, especially in Lebanon, which
suffers from a severe economic crisis. In Addition, climate change has a significant impact
on food security. Providing reliable, real-time information on crop development is essential
to support agriculture. It should look towards emerging technologies to find solutions to

overcome some of the challenges it faces.

One of the most recent developments is the increase in the use of small-unmanned aerial
vehicles (UAVs) and drones that provide very high-resolution multispectral and hyper-
spectral aerial and satellite imagery. Due to the technical, financial, and security obstacles,

we decided to use remote sensing and satellite images instead of drones.

Satellite remote sensing technologies have high potential in the evaluation of applications
in land conditions and can facilitate the optimal planning of agricultural sectors. However,
misleading land selection decisions reduce crop yields and increase production-related costs
for farmers. Therefore, the purpose of the project was to develop a land suitability

assessment system using satellite images and spatial analysis models.

This project uses satellite remote sensing methods, deep learning algorithms, and spatial
analysis tools in GIS platforms for agricultural land assessment to select areas of arable

land with the potential to increase agricultural production.

Table of Contents

ACKNOWLEDGMENTSot e e e s an e 3
7Y = Y I 2 O PP 4
INTRODUCGTION ..ottt et e e e s s e e e e s s e e e e s e s e e e e r e e e a e s e e reenananen 10
1. STUAY ZOME... ..ot e 13
LANDS EXTRACTING: DEEP LEARNING MODEL...........cccoiiiiiiiiiii e e 15
2 OVEIVIBW ...uiiiiiiii e 15
3 Data ... 16
3.1 Data Preprocessingciveveiiiiiiniiiiiin 16
4 Model Architectureooviiiiiii 20
4.1 L0020 a7 T 21
4.2 D02 2) 22
4.3 (008000177 23
4.4 LOSS FUNCHON uuuiiiiiiiiin e 24
4.5. Hyper parameters.vieieiiiiini 24
4.6. IMPlementationo..ieiuieieiii e 24
5. Resultand Evaluationc.cooiiii 25
5.1. 117 (=3 0 (or 25
5.2. Model EValUation.......oeieieiiie i erie e v e e s e e e e e e e eenenas 28
5.3. RESULL .ttt 34
DATA MANAGEMENT ... e e r e e e e enes 36
1. OVEIVIEW ..ottt s 36
2. SOUTCE Of At ...o.ivieieie i 36
3. Import and preprocessing Data.............cociiiiiiiiiii 38
3.1. IMPOTt dIreCtlY ... e 38
3.2. IMpPort Parcelsocoviiiiiiii 38
3.3. Import Sentinel-1 IMagescovvviiiiiii e 39
3.4. Import Sentinel-2 IMagescooovviiiiiiin 41
4. Data eXIraCtiON.oviiiiii e 42
4.1.) (0] 0T = =) P 42
4.2. O U B O (o 1= o L=ty P 43
4.3. Create INAICeS ..uuur et 43
SPATIAL ANALYSIS MIODELSot et e 48
1. L0 1) a4 48

2. Merge the vector dataccocviiiiiiiii 49

3. Create permanent statistical indices.................cocoviiiiii 49
4. Create statistical INdicCes.............cooiririiiii 50
5. Suitability models...........coiiiiiiii 51
5.1. Find Suitability Zones Toolcooiiiiiiiiiii 52
5.2. Generate Suitability SCOTes............coooviiiiiii 53
MONITORING AND REPORTING.......ciiiiiiiiii e e e e 54
1. L0173 a T Ty PN 54
2. The Dashboardscoooiiiiii e 54
2.1. Lands Exploitation Dashboardc.coiiiiiiiiiii e 55
2.2, Lands Data Dashboardcoooiiiiiiiiii e 56
2.3. Soil Data Dashboard...............cooiiiiiii 58
2.4. Exploited Lands Analysis Dashboardoooiiin 59
L0001V 0 I U 1] [| N 60
BIBLIOGRAPHY ... e e n e e e e et e e 61
APPENDIX ... e 63
1. Deep Learning Model Codec.ouiiiiiiiiiiiiii e 63
2. Spatial Analysis Python Toolbox Code.............coooiiiiiiiiiiiiiii e 75

Table of Figures

Figure 1 - project WOIKFIOWi e e 11
Figure 2 - SYStem HfECYCIE ... i 12
FIQUIE 3 = STUAY ZONE MAP ... eetueetueeet e et e et e e e e e et s e e et e e et e e et e e et eeat e e et aeeanaeeanseeanneentneeennnenes 13
Figure 4 - deep learning model input and QULPULcvvuieiiiii e 15
FIQUIE 5 = IR TY 8 ettt ettt e e et e e e e e e e e e et e e e e e e e e nnna s 16
Figure 6 - image 1abeling reSUILuui i e e 17
Figure 7 - Training data SChEMAiiii i e e e e e e e ees 18

Figure 8 - image data and mask as NUMPY AITAYcuuueierieriiieiiiee e e e e e e e e e e e e eeeeeeanaeees 19

Figure 9 - conolutional neural NEEWOIKcoouiiiiiiii e 20
Figure 10 - semantic Segmentation MOUE!coouriiiiiiii i 21
Figure 11 - convolution and deconvolution tECANICScouuuuiiiiieeiiiiii e 21
Figure 12 — model 1ayers AeSIGNcvuu i e e e e e e e e et e e e e e e e e et e e raeee 22
Figure 13 - model 1ayers Path.........cooueii i 23
FIQure 14 - 10U TOTMUIAcooeeieii e e et e e e e e e s 27
Figure 15 - F1 SCOTe TOrMUIA. 27
Figure 16 - graph represents the variation of training and validation loss in function of epochs 29

Figure 17 - graph represents the variation of training and validation accuracy in function of epochs . 29
Figure 18 - graph represents the variation of training and validation precision in function of epochs. 29

Figure 19 - graph represents the variation of training and validation recall in function of epochs...... 30
Figure 20 - graph represents the variation of training and validation F1 score in function of epochs.. 30
Figure 21 - graph represents the variation of training and validation 10U in function of epochs 30
Figure 22 - ROC curve of the model DY CIaSSES........uuuuiiieiiiiiiiie e 33
Figure 23 - samples images with their true masks and predicted masks.............ccvvviiiireeiiiiiinnnnnn. 34
Figure 24 - sample image with its predicted maskoooeuiiiiiiiiiie e 35
Figure 25 - import parcels SCript Organigramoceiuiiieeiiii e e e e e e e e e e e e e eaa s 39
Figure 26 - sentinell image catalog view in the snap SOftWare............ooevuviiiiieeiiiiiiiii e 40
Figure 27 - sentinell preprocessing WOrKFIOW.oviiiiiiiiiiii e 40
Figure 28 - import sentinell images SCript Organigramoveeeeeuiereiire e eee e e e e 41
Figure 29 - import sentinel2 image SCript Organigramcoveeveiiiieiiiiii e 42
Figure 30 - generate indiCces SCript Organigram..........uuueeeiiieiiiie e e e e eeeei e e et e e e e eaanas 43
Figure 31 - create permanent statistical indices script organigram..........c.cccovviiiiiiiiiieeiineeeieeeineens 49
Figure 32 - sample data of the permanent INQICESuiviiiiiiieiii e 50
Figure 33 - create statistical indices sCript Organigramccoevvviiieiiiiii i 50
Figure 34 - sample data of the statistical INAICES.............ccoiiiiiiiiiiii e 51
Figure 35 - finding suitability zones SCript Organigram..........cccoeuveiiiieiiii e e e e 52
Figure 36 - generate suitability scores SCript organigramcocuiveviiiiiieriir e 53
Figure 37 - screenshot of the land exploitation web application.................cccooeiiiiii i, 55
Figure 38 - the filter capability in the land exploitation dashboardcccoviiiiiiiiiiiiiiiinn. 55
Figure 39 — screenshot of the land data dashboard............cc.evveiiieiii i 56
Figure 40 - soil map tab in the land data dashboardoooiiiiiiiiiiii 57
Figure 41 - geology tab map in the land data dashboardcccooeeviiiiiiiiii e, 57
Figure 42 - screenshot of the soil data dashboardoouvuiiiiiiiiiiii e 58
Figure 43 - screenshot of the exploited lands analysis dashboardcccooeeiiiiiiiiin i, 59

Table of Equations

Equation 1 - learning rate fOrmulauoiiiiiiiiiii e 24
Equation 2 - aCCUraCy fOIMUIA...........oueiieiii e e e 26
Equation 3 - precision fOrMUIAcoooiiiii e 26
Equation 4 - recall TOrmMUIAiiii e e e 26
Equation 5 - false positive rate fFOrmulaooooviiiiiiiiiii e 26
Equation 6 - true positive rate fOrmula............cooeuiiiiiii e 26

Equation 7 - Intersection over union fOrmula............ccooeeiiiii i e 27

Equation 8 - F1 SCOre FOrmMUIA........coiveii e 28
Equation 9 - overall weighed metric model formula.............oouuiiiiiiiiiii e 32
Equation 10 - radar vegetation index FOrmulaoooiiiiiiiiiiii e 44
Equation 11 - normalized difference vegetation index formula.............cc.ccooviiiiii i, 44
Equation 12 - atmospherically resistant vegetation index formula..............ccccoooeeiiiiiiiiiin i, 45
Equation 13 - modified soil adjusted vegetation index formula.............ccccooeviiiiiiiiiiiie e, 45
Equation 14 - enhanced vegetation indeX fOrmulacooouuruiiiiiiiiiiii e 46
Equation 15enhanced vegetation index formulacooovii i 46
Equation 16 - green normalized difference vegetation index formulaccoveiieiiiinieiinnnnnnn, 46
Equation 17 - enhanced vegetation indeX fOrmulacooouumiiiiiiiiiiiii e 47

CHAPTER 1

INTRODUCTION

In current and future climate scenarios, the resilience and productivity of agricultural systems
will be increasingly compromised. In this changing context, the agricultural sector faces many
hurdles.

In most cases, land assessment by soil sampling and analysis is expensive and challenging. In
addition, there is a lack of datasets in some areas of developing regions where assessments of
land suitability are changed. In addition, recent datasets of those geographic information
systems have limitations, especially regarding land uses, drainage, and lack of soil sampling
information.

Remote sensing technologies can make critical contributions to agriculture monitoring and
improving our understanding of the effects of environmental changes. It provides coverage of
large areas with high accuracy and can be a very effective tool for agriculture improvement. In
this sense, remote sensing using multispectral images is an alternative for intensive manual
monitoring of crops in the field and potential savings in time and resources.

In addition, many conventional techniques for earth monitoring applications require specific
spectral features that are defined only for multispectral data such as deep learning, exploiting
both temporal and cross-sensor dependencies and deep networks achieve much better
performance than traditional methods.

Many of the limitations in the agricultural application of remote sensing techniques in previous
years were overcome with the launch of Sentinel-2 A + B. The Sentinel-1 and Sentinel-2
constellation, with an improved spatial, spectral, and temporal resolution that is tailored to the
needs of the agricultural community, both farmers and academic researchers with a focus on
international agricultural development.

Remote sensing indices are useful for tracing the development of crops, their interrelatedness,
and the consequences of the variables of interest for crop development. Following this concern,
the application of smart agriculture and satellite remote sensing-based soil-vegetation index
evaluations for agricultural land condition assessments is the key target of this project.
Therefore, land suitability assessments can be performed using the multi-criteria decision
method. The Multi-criteria Decision Method (MCDM) becomes more suitable when

10

incorporating geospatial references. In recent years, computing technologies combined with
GIS have enabled geospatial references using MCDM-land suitability evaluations.

Therefore, the purpose of this project is to develop a soil-vegetation intent land suitability
assessment model based on multi-criteria decision-making analysis to determine optimal land
distributions according to soil-vegetation indices to ensure elevated productivity.

Spatial information is key to improving the management of agricultural land. Up-to-date
mapping of these lands provides opportunities for government and research organizations to
monitor agricultural activities and for growers to understand crop status, and predict yields.

This project aims to build the infrastructure of a highly scalable system to monitor and develop
the agricultural sector in Lebanon. The spatial information needed is not limited to imagery.
This assessment cannot be completed without additional information related to agriculture like
soils, weather, elevation, slope, and other data.

Our project aims to create an artificial intelligence model using deep learning algorithms to
extract lands from images and classify them (Cultivated, Uncultivated ...). Then to build a
spatial analysis model to use the result of the first one to assess lands in an agricultural and
economical aspect.

The implementation of a system allows the government to survey the existing farms and
farmers in order to monitor the health of individual crops in the fields and support vulnerable
farm communities and support agriculture practices and development.

Finally create maps, apps, and dashboards to provide reports and statistics to help officials to
make decisions and take action.

AT,
Bi R
g’:‘ D&L \.
2 = L] M

FIGURE 1 - PROJECT WORKFLOW

11

The Project has four main features:

- Lands Extracting: use the deep learning model to extract lands, update, and retrain the
model.

- Data Collection: the process to survey farms and farmers, their status, and their needs
permanently.

- Data Analysis: It is a toolbox used to assess the existing lands every time depending on
changes in climate, season, agricultural indices, and other factors.

- Monitoring & Reporting: represent and show farm and lands data to support the
decision-maker.

These four features are related to each other and depend on each other they create our solution
life cycle.

N

FIGURE 2 - SYSTEM LIFECYCLE

The Outcome of the project is a system that users depending on its role can use to collect,
import, and export data, visualize and print maps and reports, apply spatial analysis on the
data, and share the result with others or with the communities.

12

1. Study Zone

According to the complexity to cover all areas of Lebanon, from a time perspective to the
availability of the data, and the resources needed to store and process this data. Due to these
obstacles, we take a portion of the Zahle district, where we have all the data needed and
represent a feasible study zone to apply our techniques in order to build a system that can

achieve the agricultural land assessment.

peMtain® SEs

AR
BMazraat
@;Re‘htahiyeh_-;i ¢

Quadi
Ed-Delm

'
Taanayel i
ayelig)

§<QabblEliash\ ¥y

>
a?h.
R,

Tell
EI-Akh"da‘r; 2
[7 uaq_.'.;_
EiammiqB‘lG W i BG\T;‘. J
a Jazira BGyg™
W W -~

Ry

b

- y"
J Majdelif-\aﬁjar
- R

- J{i‘ ;
Dakoueh ’
. ,’F;ﬁ'i Souairi

FIGURE 3 - STUDY ZONE MAP

13

] cana
Zone
[1 \vilages
0 125 25 5 Kilometers

N N N T T Y I |

Our zone covers 22 cadastral zones in the Zahle district located in the Bekaa governorate with
a total area of 120 Km? and more than three small cities with a medium population like Zahle

city.
This zone is considered a very diverse area, which is well populated in some cadastral zone
and has approximately an equal area of exploited and unexploited lands. Therefore, it is a very

good prototype example to test the success of the project techniques if we will apply them to
the whole country in the future.

14

CHAPTER 2

Lands Extracting: Deep Learning Model

This chapter provides a region-based semantic segmentation model to extract exploited and
unexploited lands from satellite images using the deep convolutional neural network
algorithm.

1. Overview
The goal of this model is to convert the raster satellite images into a thematic raster that

represents the exploited areas (cultivated land, farms, crops...) and the unexploited areas
(Barred lands, grassland, ...) in order to use it in the assessment phase.

Input Ouput

FIGURE 4 - DEEP LEARNING MODEL INPUT AND OUTPUT

To simplify the model we assume that the image has four classes:
- Class 0: represent the area that doesn’t classified.
- Class 1: represent the urban areas that contain roads, buildings squares, and lands that
cannot be exploited anymore.
- Class 2: stands for exploited and cultivated areas.
- Class 3: stand for the unexploited areas.

15

2. Data

Due to the complexity of using Drones, we replace them with satellite images with high
resolution that can be efficient to train this model.

Anyone can access the latest free satellite imagery of Earth; it only takes to know where you
can find them. There are many platforms where you can find free satellite imagery. Some of
them are streaming free current satellite images, while some provide licensed data.

Using The Global Mapper Software, you can download these images for any place on the
earth. The original spatial resolution is 15 cm.

The downloaded images have two uses, the first one is to train and validate the model, and the
second one is to predict and extract lands using the trained model.

2.1. Data Preprocessing

2.1.1. Data Cleaning

The downloaded satellite images are not cleaned. Although all images have the same spatial
resolution, some images contain noise and can be less clear than others.

Many images contained clouds that block the feature contained in them. Therefore, cleaning
images and choosing the net images is an important task before using any image.

Net Image Image with cloud Image with noise

FIGURE 5 - IMAGE TYPE

16

2.1.2. Data Labeling

With ArcGIS Pro, we can make our training dataset by digitizing masks on the images and
labeling them. Then export it to create the dataset.

The first step is to create a feature class and add a label field then digitize areas on the images
and determine for each feature its class.

Class Label

FIGURE 6 - IMAGE LABELING RESULT

2.1.3. Data Exporting

Using the “Export Training Data For Deep Learning” tool to convert labeled vector data into
a deep learning training dataset using the satellite image. By choosing RCNN Masks for the
Metadata Format, the output will be image chips that have a mask on the areas where the
sample exists. The model generates bounding boxes and segmentation masks for each instance
of an object in the image. This format is based on Feature Pyramid Network (FPN) and a
ResNet101 backbone in the deep learning framework model.

17

With this tool, we converted the satellite images and the mask feature class to a set of small

FIGURE 7 - TRAINING DATA SCHEMA

Root Folder

images

22| 000001.jpg

#¥ 000002.jpg

labels

1

| 000001.png
4l 000002.png

2

4| 000001.png

4| 000002.png

images (512x512) pixels, and for every class set of mask images (512x512) pixels.

TABLE 1 - TRAINING DATA COUNT

Count | Format Pixels Size | Channel

Images 3136 ipg 512 x 512 | 40 KB 3 (RGB)
Classl Mask 3136 png 512 x 512 5KB 1
Class2 Mask 3130 png 512 x 512 5KB 1
Class3 Mask 3129 png 512 x 512 5KB 1

2.1.4. Data Preparing

Preparing the data to be ready for start training we need two sets one is for X, which is the
images set, and one for Y representing the labels mask. Therefore, we must merge for each
image all masks into one image to represent Y.

The objective of the function CreateSet() is to read images and masks and convert them to
Numpy arrays after merging masks.

18

Image Shape (512,512,3) Mask Shape (512,512,1)

100 100
7
200 4 200
300 300
400 400
500 500
0 100 200 300 400 500 0 100 200 300 400 500

FIGURE 8 - IMAGE DATA AND MASK AS NUMPY ARRAY

The final dataset contains the Numpy array X which contains 3136 images with 3 channels
and the Y array which contains also 3136 masks with 1 channel.

2.1.5. Data Splitting

One of the key aspects of supervised machine learning is model evaluation and validation.
When you evaluate the predictive performance of your model, it is essential that the process
be unbiased. Using train_test_split() from the data science library scikit-learn, you can split
your dataset into subsets that minimize the potential for bias in your evaluation and validation
process.

We have two levels of splitting, the first level is to have a training set and test set. The second
level is to have the validation test.

TABLE 2 - TRAINING DATA SPLITTING RESULT

Training Testing Validation Total
2509 564 63 3136

19

https://realpython.com/learning-paths/machine-learning-python/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/index.html

2.1.6. Data Binarize

Keras provides Numpy utility library, which provides functions to perform actions on Numpy
arrays. Using the method to_categorical(), a Numpy array that has integers that represent
different categories can be converted into a Numpy array (or) a matrix that has binary values
and has columns equal to the number of categories in the data. This function returns a matrix
of binary values (either 1’ or ‘0’). It has the number of rows equal to the length of the input
vector and a number of columns equal to the number of classes. This task separates between
mask classes that can simplify the calculation of some metrics.

3. Model Architecture

Due to the low number of parameters in our deep learning model and the need of extracting
the high-level features from our images, the “Convolutional Neural Network” is the best type
of neural network that can be used for our task.

A Convolutional Neural Network is a Deep Learning algorithm that can take in an input image,
assign importance to various aspects/objects in the image and be able to differentiate one from
the other. [1]

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | K—M
(5 x5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) drepout]
@ @0
o o
@ 0:
INPUT nl channels nl channels n2 channels n2 channels E ‘. 9
(28x28x1) (24 x 24 x n1) (12x12 xnl) (8x8xn2) (4x4xn2) Q i

n3 units

FIGURE 9 - CONOLUTIONAL NEURAL NETWORK

20

3.1.0verview

Semantic segmentation of remote sensing imagery aims at identifying the land-cover or land-
use category of each pixel in an image. As one of the fundamental visual tasks, semantic
segmentation has been attracting wide attention in the remote sensing community and has
proven to be beneficial to a variety of applications, such as land cover mapping, traffic
monitoring, and urban management. Recently, many studies have resorted to learning deep
convolutional neural networks (CNNSs) with full supervision for semantic segmentation and
have obtained enormous achievements. [2]

Encoder Decoder /
)

conv + BN 4+ ReLU + pooling upsampling + conv + BN + ReLU

:‘-TJ[J

FIGURE 10 - SEMANTIC SEGMENTATION MODEL

Our model uses the semantic segmentation algorithm to infer pixel-level class masks using a
fully convolutional network.

Using convolutions, we down sample the image to capture only the required information
reducing the dimensions of the input image. The converse is up sampling with Deconvolution.
As we use Deconvolutions, we up sample the reconstructed image from a lower dimension to
higher dimensions. [3]

Convolution Deconvolution

FIGURE 11 - CONVOLUTION AND DECONVOLUTION TECHNICS

21

3.2. Layers

An encoder-decoder cascaded dense semantic segmentation framework. Our model has eight
blocks of layers, four encoder blocks and 4 decoder blocks, and one intermediate block.

CONV2D Transpose

CONV2D

CONV2D

RELU
+
Batch Normalization

|
|
|
|
|
|
|
|
|
DROP OUT l

|

|

|

CONY2D |

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
RELLU |
F
Batch Normalization I
|
|
DROP OUT !
|
|
|
CONV2D |
|
|
|
|
|
|
|
|
|
|
|

RELU
+
Batch Normalization

|
|
|
|
|
|
|
|
|
|
|
|
|
DROP OUT |
|
|
|
|
|
|
|
|
|
|
|

CONV2D

3

RELU
4

Batch Normalization Batch Normalization

RELU
+
Batch Normalization

Dencoder Layers Block

MAX POOLING 2D

Encoder Layers Block

FIGURE 12 —MODEL LAYERS DESIGN

Each encoder block has four main layers. Two convolutional each one followed by ReLU
activation and batch normalization, separated by a dropout layer. Finally, a max-pooling layer
ends the block.

Each decoder block starts with an up-sampling layer and four main layers. Two convolutional
each one followed by ReL U activation and batch normalization, separated by a dropout layer.
Finally, a max-pooling layer ends the block.

We start with an encoder block of 16 pixels size, and then each block has double the size of
the previous block. The intermediate block has a 256-pixel size and contains layers as same as
the encoder layers. For the decoder block, we start with 128 pixels then each block has a half-
size of the previous block.

The first concatenation layer allows for any number of input channels. The output depicts the
probability of four classes using the softmax function.

22

(512 x512x1)

[Prediction]

e —
Optimizer
+ — - “« — -

(512 % 512 x 3)

[Images j [SoftMax j
4 : T
: v v A
(3 x3,16) [Encoder Block 1 J [Decoder Block 4] @x316 - = = = — — — — 4 ‘
5 % |
: v v
(3x3,32) [Encoder Block 2 j [Decoder Block 3 j (3 x3,32)
ry ! A
. v |
(3 x3,64) [Encoder Block 3 j [Decoder Block 2 j (3 x3,04) I
Y : = 0 0 0 I
: v v
(3 x3,128) (Encoder Block 4 j Decoder Block 1 j [Masks Labels] (512 x512x1)
‘IF l i T (3 %3,128) (ground truth)
i

[Intermediate Block j

(3 x 3, 256)

FIGURE 13 - MODEL LAYERS PATH

3.3. Optimizer

Adam is a replacement optimization algorithm for stochastic gradient descent for training deep
learning models. [4]

We choose the Adam optimizer for our model because:

e Adam combines the best properties of the AdaGrad and RMSProp algorithms to
provide an optimization algorithm that can handle sparse gradients on noisy problems.

[4]

e Adam is relatively easy to configure where the default configuration parameters do
well on most problems. [4]

23

3.4. Loss Function

Categorical cross-entropy is a loss function that is used in multi-class classification tasks.
These are tasks where an example can only belong to one out of many possible categories,
and the model must decide which one.

Formally, it is designed to quantify the difference between two probability distributions. [5]
We use Categorical cross-entropy as a loss function for our model.

3.5. Hyper parameters

3.5.1. Learning Rate

The learning rate is the rate at which the gradient updates to the parameters occur in the
gradient direction. When this rate, ¢ is too small, model convergence takes a long time. On the
other hand, if ¢ is too large, the model diverges, and the loss might fluctuate indefinitely. To
ensure optimal learning, an initial learning rate eg is first defined (0.01 is a generally accepted
standard here), following which the rate is updated by reducing its value using
ReduceLROnPIlateau() function that reduces the learning rate £ (multiply by 0.1) when the
validation loss can’t decrease for N successively epoch (N=4).

EQUATION 1 - LEARNING RATE FORMULA

g, = 0.01
Et == 0.1 X et—l

3.5.2. Batch size

Batch size refers to the number of training examples utilized in one iteration. We use a mini-
batch mode, where the model works fine for batch size equal to 16 for the size of the images,
RAM Memory of the server used.

3.6.Implementation

There are many ready implementations on GitHub or Kaggle that we can use it. However, as
it is very robust and complex, it can be hard to thoroughly understand every bit of it. In
addition, the even bigger problem is that it does not run without error. Therefore, in our project,
we build the model from scratch.

24

https://radiopaedia.org/articles/iteration-machine-learning?lang=us

3.6.1. Language

Favored for applications ranging from web development to scripting and process automation,
Python is quickly becoming the top choice among developers for artificial intelligence (Al),
machine learning, and deep learning projects. [6]

Therefore, we use Python as a programming language to build our model.

3.6.2. Library

TensorFlow is the premier open-source deep learning framework developed and maintained
by Google. Although using TensorFlow directly can be challenging, the modern tf.keras API
beings the simplicity and ease of use of Keras to the TensorFlow project.

Using tf.keras allows us to design, fit, evaluate, and use deep learning models to make
predictions in just a few lines of code.

3.6.3. Device

“Google Colab”, is a product from Google Research. Colab allows us to write and execute our
python code through the browser and is especially well suited to our deep learning model.

More technically, Colab is a hosted Jupyter notebook service that requires no setup to use,
while providing free access to computing resources including GPUs. We use Colab since the
lack of resources (GPU, RAM) using the available hosted computer.

4. Result and Evaluation

4.1.Metrics

Confusion Matrix is used to know the performance of a Machine learning classification. It is
represented in a matrix form. Confusion Matrix gives a comparison between Actual and
predicted values.

The confusion matrix is a 4 x 4 matrix, where 4 is the number of classes plus the background.

FN: The False-negative value for a class will be the sum of values of corresponding rows
except for the TP value.

FP: The False-positive value for a class will be the sum of values of the corresponding
column except for the TP value.

25

https://www.netguru.com/blog/python-for-data-science
https://www.netguru.com/blog/python-for-data-science

TN: The True Negative value for a class will be the sum of values of all columns and rows
except the values of that class that we are calculating the values for.

TP: The True positive value is where the actual value and predicted value are the same.

Confusion Matrix allows us to measure Recall, Precision, Accuracy, 10U coefficient, and
AUC-ROC curve are the metrics to measure the performance of the model.

EQUATION 2 - ACCURACY FORMULA

TP +TN
TP+ FP+FN+TN

Accuracy =

EQUATION 3 - PRECISION FORMULA

TP

p . . -
recision TP + FP

EQUATION 4 - RECALL FORMULA

TP
TP +FN
The performance of a classifier that produces decision values of a pixel belonging to either

class can be interpreted more with the Precision-Recall (Pre-Rec) and Receiver Operating
Characteristic (ROC) curves.

Recall =

The ROC curve plots the True Positive Rate TPR with respect to the False Positive Rate FPR.

EQUATION 5 - FALSE POSITIVE RATE FORMULA

FPR= ey TN

EQUATION 6 - TRUE POSITIVE RATE FORMULA

TPR = — 0 _ Recall
~ TP+ FN e

The area under a ROC curve provides a means of measuring the classifier’s ability to
discriminate between classes in the dataset. By this definition, maximizing the area (ROC
AUC) leads to better classification accuracy.

26

The best performing models on each dataset are assessed with the F1-score and Intersection
over Union (I0U) that consolidate the above results into fewer metrics.

The F1 score is the harmonic mean of Precision and Recall, while 10U is interpreted as the
name suggests the intersection of the actual and predicted values, divided by the union of this
set for a specific class.

10U:

Area of Overlap
loU =

Area of Union

FIGURE 14 - 10U FORMULA

The Intersection-Over-Union (loU), also known as the Jaccard Index, is one of the most
commonly used metrics in semantic segmentation. The loU is a very straightforward metric
that’s extremely effective.

EQUATION 7 - INTERSECTION OVER UNION FORMULA

TP
TP+ FP +FN

10U =

F1-score:

FIGURE 15 - F1 SCORE FORMULA

27

The Dice Coefficient Known as F1 score is 2 x the Area of Overlap divided by the total
number of pixels in both images.

EQUATION 8 - F1 SCORE FORMULA

B 2XTP B 2XTP B 2 X Precision X Recall
" P+P TP+FP+TP+FN Precision+ Recall

4.2. Model Evaluation

4.2.1. Training and testing

After running the model.fit() function which trains the model using the training set and
validates with the test set, a historic result for each epoch is displayed containing loss and
metrics like accuracy on training and validation. Every epoch takes about 3 minutes to finish,
our model trains with 50 epochs, and the all-training function took about 3 hours to finish.

TABLE 3 - MODEL EPOCHS METRIC RESULT

Metrics | Epoch1 | Epoch | Epoch | Epoch | Epoch | Epoch Epoch
10 20 30 34 40 50

Loss 1.0123 | 0.7336 | 0.6805 | 0.6449 | 0.6200 | 0.6119 | 0.6112

Accuracy | 0.7035 | 0.8193 | 0.8412 | 0.8595 | 0.8710| 0.8751 | 0.8752

Precision | 0.5946 | 0.7032 | 0.7310 | 0.7483 | 0.7604 | 0.7559 | 0.7562

Train —pecall | 0.6894 | 0.7653 | 0.7852 | 0.7983 | 0.8047 | 0.8081 | 0.8082
F1Score | 0.4383 | 0.5570 | 0.5999 | 0.6207 | 0.6338 | 0.6296 | 0.6299
IOU | 06267 | 0.7211 | 0.7391 | 0.7578 | 0.7727 | 0.7741 | 0.7732
Loss | 2.2523 | 0.6401 | 0.6155 | 0.5966 | 0.5888 | 0.5946 | 0.5959
Accuracy | 0.5697 | 0.8701 | 0.8784 | 0.8876 | 0.8907 | 0.8889 | 0.8883
Test |_PrECision | 05810 | 07469 | 0.7737 | 0.7918 | 0.7874| 0.7853 | 0.7873

Recall 0.5797 | 0.7645 | 0.7703 | 0.7754 | 0.7800| 0.78 0.7798

F1 Score | 0.3071 | 0.6125 | 0.6473 | 0.6717 | 0.6697| 0.6713 | 0.6743

10U 0.6519 | 0.7439 | 0.7498 | 0.7530 | 0.7555| 0.7559 | 0.7559

The model has reached the optimal level at epoch 34 which provides a less test-loss value.
After the epoch 34 the test-loss value did not improve despite the reduction of the learning
rate from 107 to 10°°.

The following graphs show the evolution of the train and the test metrics in the function of
epochs.

28

2325 4

200 4

175 4

150

Loss

125 A

100 A

0.75 4

Training and validation Loss

Training Loss
—— Validation Loss

Epochs

FIGURE 16 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND

080

075 4

Precision

=
=
=

065

060

VALIDATION LOSS IN FUNCTION OF EPOCHS

Training and validation Accuracy

Taining Accuracy
= VWalidation Accuracy

o 10 20 30 40 50
Epochs

FIGURE 17 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND
VALIDATION ACCURACY IN FUNCTION OF EPOCHS

Training and validation Precision

Taining Precision
—— Validation Precision

Epochs

FIGURE 18 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND
VALIDATION PRECISION IN FUNCTION OF EPOCHS

29

0.80 1

0.75 1

Recall

0.65

0.60 4

0.80 A

0.75 A

F1 Score

0.65 A

0.60 1

0.65 -
0.60 1
0.55
3 050
0.45
0.40

035 4

0.70

0.70 A

Training and validation Recall

Taining Recall
—— Validation Recall

o 10 20 30 40 50
Epochs

FIGURE 19 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND
VALIDATION RECALL IN FUNCTION OF EPOCHS

Training and validation F1 Score

Training F1 Score
—— Validation F1 Score

Epochs

FIGURE 20 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND
VALIDATION F1 SCORE IN FUNCTION OF EPOCHS

Training and validation 10U

Training 10U
— Validation 10U

Epochs

FIGURE 21 - GRAPH REPRESENTS THE VARIATION OF TRAINING AND
VALIDATION IOU IN FUNCTION OF EPOCHS

30

4.2.2. Validation

Now we use the validation set to validate the optimal model after saving the weights at the
optimal epoch (epoch 34).

Therefore, we load the model and predict the mask of the validation images. The calculation
of the confusion matrix between the true masks and the predicted mask results in the

following table.

TABLE 4 - CONFUSION MATRIX OF THE MODEL

Predicted Values (Pixels)
Class 0 Class 1 Class 2 Class 3
Actual Class 0 344692 1371732 2086852 3156971
Values Class 1 326697 4704999 1246380 1283421
(Pixels) Class 2 209614 402416 22774952 5281134
Class 3 121883 897234 1925468 38800211

The above table represents the multi-label confusion matrix that shows for each class the
distribution of predicted pixels in each class.

Class 0 represents the unlabeled pixels, which have zero value.

For each class, we represent a detailed confusion matrix that represents the true positive, false
negative, false positive, and true negative.

TABLE 5 - CONFUSION MATRIX OF CLASS 1

Class 1
Prediction outcome
+ - Total
TP FN
+ P’
E 4,704,999 2,856,498 7,561,497
S
E
E’ - 2,671,382 2,671,382 5,342,764
N’
FP TN
Total | P 7,376,381 | 5,527,880 N

31

TABLE 6 - CONFUSION MATRIX OF CLASS 2

Class 2 (exploited Area)
Prediction outcome
+ - Total
TP FN
+ p’
E 22,774,952 5,893,164 28,668,116
S
E
E 5,258,700 5,258,700 10,517,400
N,
FP TN
Total | P 28,033,652 | 11,151,864 N
TABLE 7 - CONFUSION MATRIX OF CLASS 3
Class 3 (Unexploited Area)
Prediction outcome
+ - Total
TP FN
+ P’
L 38,800,211 2,944,585 41,744,796
E
E
g 9,721,526 9,721,526 19,443,052
N’
FP TN
Total P 48,521,737 | 12,666,111 N

EQUATION 9 - OVERALL WEIGHED METRIC MODEL FORMULA

m _Class . X Nb of pixels
Modelmetric — =1 metric f p

We can now calculate the metrics for each class and then calculate them for our model to get
the final evaluation values. Since the classes do not have the same number of pixels, we
should calculate a weighted average of metrics for the model depending on the number of

pixels for each class.

Total Nb of pixels

32

The below table represents the value of metrics for each class in addition to the overall model

metrics.
TABLE 8 - METRICS VALUES OF THE MODELS
Class 0 Class 1 Class 2 Class 3 Model
Pixels
Number 6,960,247 7,561,497 28,668,116 41,744,796 169,869,312
Accuracy 91.44 93.49 86.87 85.09 87.16
Precision 34.37 63.78 81.24 79.96 75.22
Recall 4.95 62.22 79.44 92.95 78.44
10U 4.52 45.98 67.13 75.39 64.18
F1 Score 8.66 62.99 80.33 85.97 76.79

The Pre-Rec curves and ROC curves for the model are shown below figures.

The ROC curve is plotted with TPR against the FPR where TPR is on the y-axis and FPR is

on the x-axis.

Roc Values is the AUC in our case 0.79 for class 1 and 0.85 for class 2 and 3 that are good.

ROC curve

10

0.8

=
=

Tue Positive Rate

=
.

0.2

— ROC curve for classl (area = 0.79)
ROC curve for class2 (area = 0.85)
ROC curve for class3 (area = 0.85)

e
0.0
0.0

0.2 0.4

06
False Positive Rate

0.8 10

FIGURE 22 - ROC CURVE OF THE MODEL BY CLASSES

33

4.3. Result

The Figure below shows the result of example images on the validation set, its mask, and the
model prediction.

Image True Mask Predicted Mask

FIGURE 23 - SAMPLES IMAGES WITH THEIR TRUE MASKS AND PREDICTED MASKS

34

After merging all the predicted masks, we got a final raster for the entire study zone that
contains three values: Urban area, exploited area, and unexploited area.

FIGURE 24 - SAMPLE IMAGE WITH ITS PREDICTED MASK

35

CHAPTER 3

Data Management

This chapter describes what kind of data has been used in this project and how it was collected
and stored, and what type of new data is created and extracted from the original set.

In addition, it shows the management of the centralized geodatabase that forms the data
source of all implemented and future planned features in this project.

1. Overview
All data used in this project is stored in the centralized geodatabase. It represents our data
store that contains vector, raster, and tabular data.

The first dataset represents the administrative division (Lebanon boundary, Provinces, Caza,
and the cadastral zones) and the study zone boundary. They are stored as vector data (feature
classes).

In addition, the parcels inside the study zone are represented as a feature class. Topography
data like DEM and Slope are stored as raster.

Sentinel 1 and sentinel 2 images are stored in a mosaic dataset that allows us to store, manage,
view, and query collections of raster and image data. It is a data model within the geodatabase
used to manage a collection of raster datasets (images) stored as a catalog and viewed as a
mosaicked image.

Predicted lands classes are also stored in the geodatabase as a mosaic dataset.
Land use, Soil, and geological data are stored as feature classes.

Tabular data represents tables stored in general the calculated indices and statistical summary
related to all stored data.

2. Source of data

There is no unique source of data, each layer or each dataset was found on a different site.

The base map imagery used in the deep learning model is extracted from Global Mapper
software. Parcels get from Cad files delivered by the official survey departments in Zahle
district and then processed to be ready to be stored inside the geodatabase.

36

Sentinel-1 and sentinel-2 images were downloaded from the Copernicus Open Access Hub
(previously known as Sentinels Scientific Data Hub), it provides complete, free, and open
access to Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5P user products, starting from the
In-Orbit Commissioning Review (IOCR).

The national center for remote sensing (CNRS) was contributed to getting the soil data

needed.

Administrative boundaries, digital elevation models, roads data downloaded from open sites
on the internet like open street map and other references.

TABLE 9 - EXTERNAL DATA USED IN THE PROJECT

Boundary Level
3 (Cadaster)

Exchange

Name Source Native Resolution | Size
Format

Base map Global Mapper software Raster 15cm 96 GB

imagery

Sentinel-1 The European Space Raster 10 m 890 MB per image
Agency

Sentinel-2 The European Space Raster 10 m 1.1 GB per image
Agency

DEM Alaska Satellite Facility Raster 125 m 525 MB

Parcels official survey departments | Vector 66 MB

Road Network | Open Street Map Vector

Soil Data The national center for Vector 1 MB
remote sensing

Geology Data Directorate of Geographic | Vector 1 MB
Affairs - Lebanese Army

Administrative | The Humanitarian Data Vector 360 KB

Boundary Level | Exchange

0 (Lebanon)

Administrative | The Humanitarian Data Vector 800 KB

Boundary Level | Exchange

1 (Provinces)

Administrative | The Humanitarian Data Vector 2 MB

Boundary Level | Exchange

2 (Caza)

Administrative | The Humanitarian Data Vector 9 MB

37

https://scihub.copernicus.eu/
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://www.facebook.com/AKSatellite/

3. Import and preprocessing Data

Importing data to the geodatabase is not always easy. Some data are ready to be imported
directly using ArcGIS pro tools, but some of them need cleaning and processing before
importing. Writing python code to create custom tools to automate the preprocessing
operation is essential, especially for the imagery dataset that needs to be updated with the new
satellite images.

3.1. Import directly

Vector data like soil data, geology, Administrative boundaries, and road network are imported
using the ArcGIS pro tool “Feature Class To Feature Class (Conversion)”. [7]

Data cleaning at the level of the attribute table to clear some unused fields or some wrong
values to have a clean feature class for each layer.

For the raster data, DEM and Satellite images are imported using always ArcGIS pro by
creating a raster dataset “Create Raster Dataset (Data Management)”. [8]

3.2. Import Parcels

Parcels cannot be imported straightly into the geodatabase, since they came as multiple
AutoCAD files as polylines and annotation that each cadaster zone has its cad sheet.

Converting those files to a single feature class needs first importing them to the ArcGIS pro
and then creating a polygon feature class after cleaning the cad files and ensuring that all
parcel polylines are closed and have their number annotation inside them. Then use the spatial
analysis join to catch each parcel its number and write it in the attribute table. All this process
needs to be applied to each cadaster zone, so the best practice to do that is to use automation
and geo-processing, create a python tool, and run it for each zone. After this task, merging the
multiple feature class into one after giving each zone an id to separate parcels based on the
cadaster zone (Villageld). The final output will be one feature class named parcels as polygon
contains in its attribute tables the parcel number and the cadaster zone id.

38

DWG Get Polylincs Parcels Polylines j
Parcels Sheet / \
Cad I'ile \ Spatial Join
Get Annotations Parecls Annotations] / l

[Village ID] > Calculate Field 1 .+ [Parcels Polygons J
Long

{ Parcels j » Q ’ «— [Final Zone Parcels]
I'eature Class
|

FIGURE 25 - IMPORT PARCELS SCRIPT ORGANIGRAM

3.3. Import Sentinel-1 Images

SENTINEL-1 is an imaging radar mission providing continuous all-weather, day-and-night
imagery at C-band. The SENTINEL-1 constellation provides high reliability, improved revisit
time, geographical coverage, and rapid data dissemination to support operational applications
in the priority areas of marine monitoring, land monitoring, and emergency services.

The SENTINEL-1 Synthetic Aperture Radar (SAR) instrument acquire data in four exclusive
modes, we use in this project the Interferometric Wide swath (IW) - Data is acquired in three
swaths using the Terrain Observation with Progressive Scanning SAR (TOPSAR) imaging
technique. In IW mode, bursts are synchronized from pass to pass to ensure the alignment of
interferometric pairs. IW is SENTINEL-1's primary operational mode over land. [9]

The observation mode over (non-polar) land is the Interferometric Wide (IW) mode providing
dual-polarization (VV and VH) imagery over a 250 km swath at a 5 x 20 m spatial resolution.

SENTINEL-1 data products distributed by ESA include multi-levels, but we use the Ground
Range Detected (GRD) Level-1 data with a multi-looked intensity only (systematically
distributed).

Each downloaded file in .zip format stores the data in four bands:

Amplitude_VH
Intensity VH
Amplitude_VV
Intensity_VV

39

-6 [1] S1B_IW_GRDH_1SDV_20210109T033446_20210109T033511_025072_02FBF7_7095
- C Metadata
13 Vector Data
- (C3 Tie-Point Grids
+ (23 Quicklooks
&3 Bands
B Amplitude_vH
~[E] Intensity_VH
B Amplitude_vv
@] Intensity WV

+
+

LIbqee o}

FIGURE 26 - SENTINEL1 IMAGE CATALOG VIEW IN THE SNAP SOFTWARE

Before using the sentinel-1 images, the pre-processing steps including radiometric calibration,
removal of thermal noise offset, and ortho-rectification with radiometric correction should be
applied using SNAP (Sentinel Application Platform) is a remote sensing toolbox architecture
developed by the European Space Agency. It includes tools for all common remote sensing
satellites.

Using SNAP we can build a preprocessing model and use it in batch processing to convert all
images and get the final images.

mermdﬂohelhmmﬂ Calibration

/
Terrain-Correction Speckle-Filter

FIGURE 27 - SENTINEL1 PREPROCESSING WORKFLOW

Each image results in two image files (sigma0_VH and sigma0_VV). These images need to be in
one image with two bands.

Importing sentinel-1 images to the geodatabase in a mosaic dataset, and saving each image in its
date with two bands after clipping it to the study zone will be done using a custom
geoprocessing tool. This tool can run each time we need to import a new sentinel-1 image to the
geodatabase.

40

' arepy Funclion

Sigma ¢ VV
e
temporary Layer

Composite Bands 1
Sigma 0 HV
.img lile (Sentinel 1 dataset]

mosiic datasel
i 4
I
|
Study Zone Cli Add Rast < Image Date
l . - P - e Datc
leature class

FIGURE 28 - IMPORT SENTINEL1 IMAGES SCRIPT ORGANIGRAM

3.4. Import Sentinel-2 Images

SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging mission. The
full mission specification of the twin satellites flying in the same orbit but phased at 180°, is
designed to give a high revisit frequency of 5 days at the Equator.

SENTINEL-2 carries an optical instrument payload that samples 13 spectral bands: four bands
at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution. The orbital swath width
is 290 km.

The Sentinel-2 product used is Level-2A, which is the Bottom-Of-Atmosphere reflectance in
cartographic geometry.

There are 13 Sentinel 2 bands in total. We use four bands with 10 meters in pixel size that
came from Sentinel 2B, to form a multispectral image. Blue (B2), green (B3), red (B4), and
near-infrared (B8) channels with a 10-meter resolution.

Each band is downloaded in a single .jp2 file, so a pre-processing phase is mandatory to
merge these bands into one multispectral image and added it to a mosaic dataset.

Another custom tool was created to automate the importing task of each group of bands into
the mosaic dataset. This tool can be run each time we need to import a new sentinel-2 image to
the geodatabase.

41

v arepy Function

Blue B2 band j (NIR BS band]
Lip2 file

temporary Layer

input Parameter

e

¥

Green B3
e — Composite Bands

[Sentinel 2 dataset]

mosaic dataset

/ *
Red B4 l | E' =] 7.
Jip2 [ile 05 (-

1
Clip 1 — Add Raster ‘ «— [lm"ﬁ:{:’m }

e

Study Zone
Ieature class

FIGURE 29 - IMPORT SENTINELZ2 IMAGE SCRIPT ORGANIGRAM

4. Data extraction

The set of data listed in the last section represents layers and tables used as native sets. There
are more tables, layers, and raster images inside the geodatabase. Those datasets are extracted
from the first dataset. Using existing geoprocessing tools in the ArcGIS pro or custom tools
developed with python and Arcpy.

4.1. Slope layer

The Slope layer represents the steepness at each cell of a raster surface. The lower the slope
value, the flatter the terrain; the higher the slope value, the steeper the terrain.

It is calculated usually from the DEM raster; in our geodatabase, we use the preexisted
geoprocessing tool “Slope (Spatial Analyst)”.

42

https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-analyst/slope.htm

4.2. Roads Closeness

It is a raster layer that represents the average minimum distance in each pixel from the road
network, this raster indicates where we are close to the road network and where we are far
fromit.

To create this layer we use the vector road network layer (Polylines) and we create a raster
using the existing geoprocessing tool Calculate Distance (Raster Analysis).

It is used to calculate the Euclidean distance from a single source or set of sources.

4.3. Create Indices

Using the sentinel-2 images added recently to the geodatabase with its four bands to create
multiple single-band raster layers, each raster represents a vegetation index calculated based
on its proper formula using the four bands of sentinel-2 and the two bands of sentinel-1. These
calculations are repeated every month and the result will be appended to the indices mosaic
dataset.

arcpy Function

lemporary Layer
— Index Formula
-d String

Sentinel 2 dataset l

mosaic dataset

— Extract Bands — Rasier Caleulator
=

Sentinel 1 dataset l

g
=
E
£
B
H
3
=

mosaic dataset

00
B

Indices dataset - Add Raster ¢ I'mage Date
mosaic dalasel -+ — - Date

FIGURE 30 - GENERATE INDICES SCRIPT ORGANIGRAM

This Tool generates eight indices each month, RVI using sentinel one bands (VV and HV)
and NDVI, ARVI, MSAVI, AVI, CIG, GNDVI, and SR using sentinel two bands (Red,
Green, Blue, and Infrared).

43

4.3.1. Radar Vegetation Index (RVI)

EQUATION 10 - RADAR VEGETATION INDEX FORMULA

AVHy,
RVI= —— 2
VHyo + VWi

v0 (gamma-nought) represents the radiometrically and geometrically corrected SAR
backscattering coefficient for each polarization combination in linear units (m2/mz2).

RVI is a ratio of cross-polarization to ~total power from all polarization channels. It generally
ranges between zero and one, and it is a measure of scattering randomness. As a ratio, RVI
has less sensitivity to radar measurement geometry and topography and remains insensitive to
absolute calibration error in radar data.

RVI is near zero for a smooth bare surface and increases with vegetation growth. It has an
enhanced sensitivity to vegetation cover and biomass.

4.3.2. Radar Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI) quantifies vegetation by measuring the
difference between near-infrared (which vegetation strongly reflects) and red light (which
vegetation absorbs).

NDVI always ranges from -1 to +1. But there isn’t a distinct boundary for each type of land
cover.

As shown below, Normalized Difference Vegetation Index (NDVI) uses the NIR and red
channels in its formula.

EQUATION 11 - NORMALIZED DIFFERENCE VEGETATION INDEX FORMULA
IR—R

NDVI =
v IR+ R

Healthy vegetation (chlorophyll) reflects more near-infrared (NIR) and green light compared
to other wavelengths. But it absorbs more red and blue light.

This is why our eyes see vegetation as the color green. If you could see near-infrared, then it
would be strong for vegetation too. Satellite sensors like Landsat and Sentinel-2 both have the
necessary bands with NIR and red. [10]

44

https://gisgeography.com/free-global-land-cover-land-use-data/
https://gisgeography.com/free-global-land-cover-land-use-data/
https://gisgeography.com/landsat-program-satellite-imagery-bands/
https://gisgeography.com/how-to-download-sentinel-satellite-data/

4.3.3. Atmospherically Resistant Vegetation Index (ARVI)

ARVI is most useful in regions of high atmospheric aerosol content. It uses blue light
reflectance measurements to correct for the atmospheric scattering effects that also influence
the reflectance of red light.

EQUATION 12 - ATMOSPHERICALLY RESISTANT VEGETATION INDEX FORMULA

IR—-2R+B

ARV = —————
v IR+ 2R—-B

The range for an ARVI is -1 to 1 where green vegetation generally falls between values of
0.20 to 0.80.

4.3.4. Modified Soil-Adjusted Vegetation Index (MSAVI)

The modified soil-adjusted vegetation index (MSAVI) is an index designed to
substitute NDVI and NDRE where they fail to provide accurate data due to low vegetation or
a lack of chlorophyll in the plants.

During the stages of germination and leaf development, there is a lot of bare soil between the
seedlings.

EQUATION 13 - MODIFIED SOIL ADJUSTED VEGETATION INDEX FORMULA

MSAVI = 0.5 x| (2IR +1) = J@2IR + 12— (BIR —R) |

On EOS Crop Monitoring, MSAVI values range from -1 to 1, where:

-1 to 0.2 indicate bare soil, 0.2 to 0.4 is the seed germination stage, 0.4 to 0.6 is the leaf
development stage.

When the values go over 0.6, it is now high time to apply NDVI instead. In other words, the
vegetation is dense enough to cover the soil. [11]

45

https://eos.com/make-an-analysis/ndvi/
https://eos.com/industries/agriculture/ndre/
https://eos.com/products/crop-monitoring/

4.3.5. Enhanced Vegetation Index (EVI)

EQUATION 14 - ENHANCED VEGETATION INDEX FORMULA
2.5 % (IR — R)
IR+6R+75B+1

EVI =

Enhanced Vegetation Index (EVI) is similar to Normalized Difference Vegetation Index
(NDVI) and can be used to quantify vegetation greenness. However, EVI corrects for some
atmospheric conditions and canopy background noise and is more sensitive in areas with

dense vegetation. [12]

4.3.6. Enhanced Vegetation Index (CIG)

EQUATION 15ENHANCED VEGETATION INDEX FORMULA
IR

CIG = —-1
G

Calculates the Green Chlorophyll Index (Clg) from a multiband raster object and returns a
raster object with the index values. [13]

4.3.7. Green Normalized Difference Vegetation Index (GNDVI)

EQUATION 16 - GREEN NORMALIZED DIFFERENCE VEGETATION INDEX FORMULA
IR—G
IR+ G

GNDVI =

The GNDVI (Green Normalized Difference Vegetation Index) is an index of the plant’s
"greenness” or photosynthetic activity. It is one of the most widely used vegetation indices to
determine water and nitrogen uptake in the crop canopy.

The values are given by this index also vary between -1 and 1. [14]

46

4.3.8. Enhanced Vegetation Index (GNDVI)

EQUATION 17 - ENHANCED VEGETATION INDEX FORMULA
IR
R

SR

This is the simplest VI which is a ratio between the reflectance recorded in the Near Infra-Red
(NIR) and Red bands. This is a quick way to distinguish green leaves from other objects in the
scene and estimate the relative biomass present in the image. Also, this value may be very
useful in distinguishing stressed vegetation from non-stressed areas. [15]

47

CHAPTER 4

Spatial Analysis Models

In this chapter, we will create the spatial analysis models and geo-processing tools that
perform essential operations on the geographic data already collected and stored in the
geodatabase. In addition, create a new dataset that contains and combines the all
characteristics of the lands data. Also, build the suitability models to weights locations relative
to each other based on given criteria in order to find a favorable location.

1. Overview

There are three different types of spatial analysis in this project. The first type is to merge
parcels with the vector data using the “Union Tool” in order to create a new dataset. Each row
contains a unique combination of data. In other means, this model clip the parcel into small
pieces, each piece represents a set of indices in addition to the parcel number and village Id.

The second type is to calculate the statistical value of raster indices on each parcel combined
with the type of land already extracted (Unexploited, Exploited), the result will be stored in a
new table of statistical indices.

The result of those analysis operations is two statistical tables one is permanent, which stores
the static data of the parcels like (Elevation, Slope, Road closeness,...).

This table can store more data types, which is populated with a Geo-processing tool called
“CalculatPermanentStatisticalindicesTool”.

The second table will be dynamic and it stores the statistical indices of the indices raster
created and stored in the central geodatabase. But it populated each time we import a new
sentinel-1 and sentinel-2 image before creating the raster indices on a different date.

A custom Geoprocessing tool is used to populate this table.

The third type of analysis represents two models to create a suitability area and scores with
criteria set by the user by merging multiple rasters using weighted suitability calculation
where those weights are chosen by the user.

48

2. Merge the vector data

The first step before starting our analysis is to merge the parcels with the vector data. The
geology layer, the soil type layer, and the parcels merged using the predefined analysis tool
“Union”.

Computes a geometric union of the input features. All features and their attributes will be
written to the output feature class.

3. Create permanent statistical indices

In order to calculate the topographical characteristics for the parcels, a python tool was
developed tool to extract the statistical (minimum, average, maximum) values of the
elevation, slope, and road closeness in each parcel. This calculation split the statistics based
on the land exploitation class (Unexploited area, Exploited area) in each parcel.

Using the “ZonalStatisticsAsTable” predefined tool, our model summarizes the values of each
raster within the zones of the parcels and reports the results as a table.

Those statistical indices are permanent and does not change in function of time.

arepy Function
temporary Layer

Index Ragter On UL onal Statistics As Table
z- MIN MEAN MAX
Unexploited Lands T) AN
Raster|dataset \ I N
Raster Calculution
UL*IR
:* /

Index Rast 2
ndex Raster Parcels Permanent Indices
RedlerDalasel) -

Feature Class Table

Raster Calculation
z* EL* IR l ~ I
/7

Exploited Lands / Y
RaslerDalasel .

Index Ragter On EL - Zonal Statistics As Table Tndex Name
MIN MEAN MAX String

FIGURE 31 - CREATE PERMANENT STATISTICAL INDICES SCRIPT ORGANIGRAM

The result will be appended to the permanent indices dataset, which is store in each row the
parcel id, land class, index name, and statistics (min, mean, and max).

49

Permanent Statistical Indices (Features: 129721, Selected: 0)

ParcellD * Class Index Min Mean Max

FIGURE 32 - SAMPLE DATA OF THE PERMANENT INDICES

4. Create statistical indices

This model is created to calculate the vegetation indices of the exploited area in each parcel. It
is a python tool that extracts the statistical (minimum, average, maximum) values of indices
raster that is generated from sentinel-1 and sentinel-2 using the indices formulas on each
overlay with the exploited and unexploited lands and the parcel.

Unlike the previous tool “permanent statistical indices” the result of this tool is appended to
the statistical indices table where each index raster represents an image at a point in time, this
model can be run each time we import new indices raster.

Zonal Statistics As Tabl
Index Raster On UL — o Slalislies s THRe
* MIN MEAN MAX temporary Layer
, y N
Unexploited Lands T N input Parameter
RagterDataser I
Raster Calculation
LL* IR
iless Uiy Purcels Indices
RasterDatasel \ Teature Class Lable
Raster Caleulation
* EL* IR ~
7
5 N s
Exploited Lands P
RasterDataset ‘
00
Tndex Radter On BT, Zonal Statistics As Table
MIN MEAN MAX it

Index Raster Date Index Name
D Siring

e

FIGURE 33 - CREATE STATISTICAL INDICES SCRIPT ORGANIGRAM

50

The result will be appended to the indices dataset, which is store in each row the parcel id,

land class, index name, date, and statistics (min, mean, and max).

ParcelID
10010_181
10010_181
10010_181
10010_181
10010_181
10010_181
‘10010_181
10010_181
10010_181
10010_181
10010_181
10010_181
10010_181

10010_181

4~ Date Class Index Min Mean Max
7/14/2021, 3:00 AM 3 I0I 1.00 1.21 2.00
7/14/2021, 3:00 AM 2 I0I 0.00 1.07 2.00
7/14/2021, 3:00 AM 3 SR 1.00 1.00 1.00
7/14/2021, 3:00 AM 2 SR 1.00 1.30 3.00
8/13/2021, 3:00 AM 3 RVI 0.71 0.97 1.16
8/13/2021, 3:00 AM 2 RVI 0.71 0.89 1.04
8/13/2021, 3:00 AM 3 NDVI -0.24 -0.17 -0.04
8/13/2021, 3:00 AM 2 NDVI -0.24 0.02 0.39
8/13/2021, 3:00 AM 3 ARVI -0.39 -0.29 -0.09
8/13/2021, 3:00 AM 2 ARVI -0.39 0.13 1.27
8/13/2021, 3:00 AM 3 MSAVI 0.80 0.82 0.86
8/13/2021, 3:00 AM 2 MSAVI 0.80 0.87 0.94
8/13/2021, 3:00 AM 3 EVI -0.09 -0.06 -0.02
8/13/2021, 3:00 AM 2 EVI -0.09 0.01 0.13

FIGURE 34 - SAMPLE DATA OF THE STATISTICAL INDICES

5. Suitability models

Concerning completing the spatial analysis model, two suitability tools were created to help
find the best place to cultivate any type of plantings based on dynamic criteria defined by the
user.

The first tool is “Finding Suitability Zones” to get only the areas that coincide with the criteria
defined by the user. The result is a thematic raster with zeros and one’s values represent where
is suitable and where is not suitable.

The second tool is “Generate Suitability Score” to generate areas with a score based on
normalization ranges and percentage weight for each raster to get suitability zones where the
user can explore where the best areas and where the less suitable and where the worst places.

Those two tools are generic which means that the user can use rasters and define the best
range of values in each raster to get the best areas that correspond to each condition.

o1

5.1. Find Suitability Zones Tool

Fr— - - - - - — - - — — 1 arepy Function
F— — - - - - - - - - =

Raster
raster type
Min Valuc Raster Calculation
Double
ouol Raster Multiplication

Raster Calculation
Conditional: Min < x < Max l

Suitable Zone

usler Lype

FIGURE 35 - FINDING SUITABILITY ZONES SCRIPT ORGANIGRAM

Users can use this model to find where the areas that hit off with their criteria are. By
classifying the study zone into two classes (satisfied and not satisfied). A conditional and
logical raster calculation is applied to produce the suitability area.

Users can use many rasters and define a range of accepted values for each raster.

52

5.2. Generate Suitability Scores

Users can use this model to classify the zone referring to their criteria and the defined range
after giving the weight of each raster to produce a score raster to explore where the most
suitable and where the unsuitable and get a general idea about the suitability scores in the
study zone.

Min Value
Double

arepy Function

temporary Layer

e

|

|

|

| Raster
raster type

|

|

|

|

|

|

|

Raster Calculation]

Conditional: Min = x < Max

|
|
|
Raster |
raster fype |
Multipk Raster
L — — — — — — — —

WeigthValue
Intcger (0-100)
Multiple Inpuis
L — — — — — — GPValuelable

. it Y Raster Calculation
Max Value [Suitable Zone]
Double ragter type Raster Weigthed Average

FIGURE 36 - GENERATE SUITABILITY SCORES SCRIPT ORGANIGRAM

53

CHAPTER 5

Monitoring and reporting

In this chapter, we created interactive web applications (dashboards) that contain indicators,
charts, and maps to monitor and visualize land exploitation, vegetation health, soil
characteristic, terrain properties, and other data to make the users identify the characteristics
of agricultural lands from the quality of soil, monitor vegetation health and to determine the
lands that cover his needs.

1. Overview

We created four monitoring and reporting applications. The first dashboard is a general
reporting tool to give information about land exploitation at the level of the cadastral zones.
The second one more specific is to visualize and query data at the level of lands and parcels to
get the parcels' characteristics like average elevation and average slope and exploitation areas
and other data. The third dashboard is created to monitor the exploited lands by visualizing
the change of many vegetation and soil indicators in the function of time. The last application
is soil data reporting which is to give an idea about the soil properties of each parcel.

All those applications are dynamic and interactive where the users can pan and zoom and
select the target cadastral zone, parcel, or indicator to filter the data in such a way to interact
with the application and help them to make decisions or take action and assess the lands from
many points of view.

2. The Dashboards

Using ArcGIS Online, we create four web applications by publishing all the data stored in the
centralized geodatabase to the portal to create web layers and web maps to be used in those
dashboards.

All the dashboards are web applications and need only a browser and internet connection to be
opened. Using Esri products, in this case, the ArcGIS online enables us to make those
applications without writing code and without any development work.

54

2.1. Lands Exploitation Dashboard

This Application can be used to explore land exploitation and its percentages from the total
area. It contains the map and its legend, four indicators of areas: total area, urban area,
exploited area, and unexploited area. In addition, a pie chart for the distribution of land types.

- Select a cadastral zone
B

llln Lands Explotation Dashboard

Legend
e [@|Total Area: 119.8 Km2
Cadastral Zones Urban Area Exploited Area Hnelp!n‘lled Area
fip12.7 w53 :488
UrbanArea Km2 Km2 Km2
=
Lands Types Distribution
ExploitedLands
|

Explored
Area 41.26%

—Topeerpdly bovi|

ar Seogaphics SIS NG BEEEE TR RN -Leser., T

FIGURE 37 - SCREENSHOT OF THE LAND EXPLOITATION WEB APPLICATION

Users can use the drop-down list at the top to filter the indicator and the chart and zoom on
the map into the target cadastral zone, to preview the same information in one cadastral zone.

& Select a cadastral 20ne

[d|Total Area: 4.4 Km2

ition Dashboard

Urban Area Exploited Area Unexploited Area
= *
fro5 w26 =11
Km2 Km2 Km2

Lands Types Distribution

Unexploited
Area 24.43%

Exploitzd
Area BR.25%

FIGURE 38 - THE FILTER CAPABILITY IN THE LAND EXPLOITATION DASHBOARD

55

When the user does not select any cadastral zone the application display the entire zone and
clears the filter on the cadastral zone.

2.2. Lands Data Dashboard

This Application is designed to report land data at the level of parcels. The user should select
the cadastral zone and the parcel number to explore its data.

The dashboard contains six indicators at the left:

- The area of the selected parcel

- Its average distance from the closest road
- Average elevation

- Average slope

- Average soil depth

- Average soil PH

We have three maps in the middle containing the parcels layer:

- Geological map with the geological zones
- Soil map which has the soil classes
- The lands exploitation map.

Select a Cadastral Zane

llln Lands Data Dashboard]

Geological Pie chart Exploitation Chart

Usger Aprian 1%
. e TE

Soil Classes Pie Chart Soil Composition Pie Chart

Lepensin 6%

Area
22,860 m2 S8

1o
|

Arafma)

Roads Closeness
wOm
Elevation
A 1,357 m
Slope
k 15 deg

Depth
2.109 cm

Uresploited Arms UbanSren Exploiad dres

FIGURE 39 — SCREENSHOT OF THE LAND DATA DASHBOARD

56

At the right, the dashboard preview the composition of the parcel in the geological and soil

classes, also the soil composition using pie charts, in addition the exploitation zones using
series chart.

Select a Cadastral Z¢ Sel P: 1
el Lands Data Dashboard § [retaduiaitone] Soreree

G =

Geological Pie chart Exploitation Chart

Area
[122,860 m2

Roads Closeness
wOm
Elevation
A 1,357 m
Slope
k 15 deg

Depth
1.109 cm

PH
é 21

Alpian 3%

Soil Classes Pie Chart Soil Composition Pie Chart

SN0 18%

ChNRS. Cen Pewerec by fan

g
GaologyMsp SoilMap Exploitation Map

FIGURE 40 - SOIL MAP TAB IN THE LAND DATA DASHBOARD

luln Lands Data Dashboard 8 iimacsdeswalhne i Snestrsl -
Geological Pie chart Exploitation Chart
Area
[322,860 m2
Roads Closeness % "
i s
wom h
Elevation D ||
A 1 l'357 m inexshoitad Araa Urban dra: s
Soil Classes Pie Chart Soil Composition Pie Chart
Slope
k 15 deg -
Depth
1.109 cm

PH
é 2.1

GeologyMsp SoilMap | Explaitation Map

FIGURE 41 - GEOLOGY TAB MAP IN THE LAND DATA DASHBOARD

57

All the indicators and the charts will change according to the selected parcels. Zooming into
this parcel in the maps is also performed.

2.3. Soil Data Dashboard

The aim of this dashboard is to explore the data related to the soil under the selected parcel.

Two indicators to the left show the average soil depth and the average PH. In addition, a pie
chart represents the soil composition in the percentage of the parcel: % of silt, % sand, % clay.

The map to the right shows the overlay between the parcels and the soil class zones.

& Soil Data Dashboard

Depth PH
3.875cm ¢ 5.3

Soil Composition Pie chart

QRS- Caner for Remons Sensing Pawered by S

FIGURE 42 - SCREENSHOT OF THE SOIL DATA DASHBOARD

In addition, a selector dropdown user can use to filter the dashboard data to its target parcel.

58

2.4. Exploited Lands Analysis Dashboard

It is the crops monitoring application, this dashboard makes users to monitor and analyze the
exploited lands in the function of time by providing the vegetation indices as a time series
chart.

Users can filter the data by parcel and cadastral zone, and choose the target vegetation or soil
index to get its max, min, and average chart over the year.

. . Sel Ind Sels o 'F. ; Sels |
#i1 Exploited Lands Analysis Dashboard S Senetenindex g Celectecadutalzon B e pere

Exploited Area AR ‘?]%} Total Area
3.8k m2 ;ﬁﬁ} D7.9k m2

-

_
=

FIGURE 43 - SCREENSHOT OF THE EXPLOITED LANDS ANALYSIS DASHBOARD

In addition, you can preview the exploited area as a map and its percentage area from the
entire parcel as an index and pie chart.

59

CHAPTER 6

Conclusion

As a conclusion, Data science and machine learning has played an important role to improve
technology in wide industries. The agriculture sector has gained huge benefits from mixing GIS
science and deep learning technology.

The deep learning model created at the beginning of this project has reduced a lot of efforts to
find and extract lands and it can be an automated workflow and rerun every year to update the
exploitation lands area.

The centralized geodatabase can be expended any time and populated with more data not at the
quantity level only but also with a new type of data. A new ArcGIS product can be used here,
which is the ArcGIS enterprise where we can power mapping and visualization, analytics, and
data management to organize and share your work on any device, anywhere, at any time.

In addition, the enterprise geodatabase provides a good solution. It adds the ability to manage a
shared, multiuser geodatabase as well as support for several critical version-based GIS
workflows. The ability to leverage your organization's enterprise relational databases is a key
advantage of the enterprise geodatabase.

In the end, the spatial analysis model was the most important factor in this project; it provides
data extraction and data analysis to prepare data to be ready to visualize in the web maps and
web applications where the decision makers can see what others cannot.

Integrating ESRI solutions can add many abilities and feasibility to the workflow. Using a
product like ArcGIS insights can provide data exploring and perform advanced analytics such
as spatial, statistical, predictive, and link analysis within an intuitive experience that works the
way you do. Revolutionize decision-making with analysis that visually informs the
organization of new, previously unexplored insights gained from the perspective of “where”.

60

Bibliography

[1]

S. Saha, "Towardsdatascience,” 15 10 2018. [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53.

Y. Hua, M. Diego, L. Mou, X. X. Zhu and D. Tuia, "Semantic Segmentation of Remote Sensing
Images," p. 1, 2022.

A. Kumar, "Image Segmentation: FCNet," 7 6 2020. [Online]. Available:
https://medium.com/@abhishekkakiak /image-segmentation-fcnet-bff2d680e87a.

J. Brownlee, "Gentle Introduction to the Adam Optimization Algorithm for Deep Learning,”
Machine Learning Mastery, 3 7 2017. [Online]. Available:
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning.

"Categorical crossentropy,” Knowledge Center, [Online]. Available:
https://peltarion.com /knowledge-center/documentation/modeling-view/build-an-ai-
model/loss-functions/categorical-crossentropy.

J. Protasiewicz, "Python Al: Why Is Python So Good for Machine Learning?," netguru, 31 8
2018. [Online]. Available: https://www.netguru.com/blog/python-machine-learning.

"Feature Class To Feature Class (Conversion)," esri, [Online]. Available:
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/conversion/feature-class-to-
feature-class.htm.

"Create Raster Dataset (Data Management)," esri, [Online]. Available:
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/data-management/create-raster-
datasethtm.

"User Guides - Sentinel-1 SAR - Overview - Sentinel Online - Sentinel Online," European
Space Agency Signature, [Online]. Available:
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-
sar/overview#:~:text=SENTINEL%2D1%20is%20an%20imaging,night%20imagery%20at
%20C%2Dband..

"What is NDVI (Normalized Difference Vegetation Index)?," GISGeography, 30 8 2022.
[Online]. Available: https://gisgeography.com/ndvi-normalized-difference-vegetation-
index/.

"MSAVI: Monitor Crops At Earliest Growth Stages," EOS Data Analytics inc., [Online].
Available:
https://eos.com/industries/agriculture/msavi/#:~:text=The%20modified%20s0il%2Dadju
sted%20vegetation,bare%20s0il%20between%20the%20seedlings..

"Landsat Enhanced Vegetation Index," U.S. Geological Survey, [Online]. Available:
https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index.

61

"Clg," esri, [Online]. Available: https://pro.arcgis.com/en/pro-app/2.8/arcpy/spatial-
analyst/cig.htm.

M. Agustin, "What is the GNDVI?," Auravant, 13 07 2022. [Online]. Available:
https://help.auravant.com/en/articles/3636624-what-is-the-gndv.

"Vegetation Indices Basics (SR - NDVI - PRI)," hiphen, [Online]. Available:
https://www.hiphen-plant.com/vegetation-index/3582/.

Saffer |D, "Introduction to biomedical literature text mining: context and objectives,"
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/24788258.

guru99.com. [Online]. Available: https://www.guru99.com/word-embedding-
word2vec.html.

M. Nayak. [Online]. Available: https://medium.com/towards-artificial-intelligence/an-
intuitive-introduction-of-word2vec-by-building-a-word2vec-from-scratch-al1647elc266c.

T. & 0. H. Koiwa, "Extraction of disease-related genes from PubMed paper using word2vec,"
in the 8th International Conference, 2017.

T. Peters, "Binary Classification on a Highly Imbalanced Dataset,” in Universiteit Utrecht,
Netherlands, 2018.

S. Kurin, "A comparison of classification models for imbalanced datasets," Louvain School of
Management, 2017.

S. B. & M. A. Chikh, "Medical imbalanced data classification,” Tlemcen University, Algeria,
2017.

A. Géron, Hands on Machine Learning with Scikit-Learn & TensorFlow., O'Reilly, 2017.

]. Martinez, "Credit Fraud Detector,” [Online]. Available:
https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets.

H. Su, "One class classification with Scikit Learn,” 2015. [Online]. Available:
http://www.hongyusu.com/imt/technology/one-class-classification-with-scikit.html.

wikipedia, "One-class classification," [Online]. Available: https: //en.wikipedia.org/wiki/One-
class_classification.

62

Appendix

1. Deep Learning Model Code

import json

import numpy as np

import os

import matplotlib.pyplot as plt

from sklearn.model _selection import train_test split

from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle

import gdal

import os

import shutil
import itertools
import random
import pandas as pd

import matplotlib.pyplot as plt
import tensorflow as tf

import keras

from keras import backend as K

from keras.applications import imagenet_utils

from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing import image

from keras.metrics import categorical_crossentropy

from keras.models import Sequential, Model, load model

from keras.layers.core import Dense, Flatten
from keras.layers.convolutional import *
from sklearn.metrics import confusion_matrix
from scipy import misc, ndimage

from matplotlib import pyplot
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, MaxPool2D, Dense, Dropout
, Input, Flatten, Activation
63

from keras.layers import GlobalMaxPooling2D

from keras.layers.merge import Concatenate
from keras.models import Model

from keras import initializers

#from keras.optimizers import adam_v2

from keras.callbacks import ModelCheckpoint, Callback,

images_dir = "Data/images/"
labels_dir "Data/labels/"

model _path = "Models/FinalModel2_h5"
randomstate=42

from sklearn.model_selection import train_test split

from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle

import gdal

import os

import shutil
import itertools
import random
import pandas as pd

import matplotlib.pyplot as plt
import tensorflow as tf

import keras

from keras import backend as K
from keras.applications import imagenet_utils

EarlyStopping

from keras.preprocessing.image import ImageDataGenerator

from keras.preprocessing import image
from keras.metrics import categorical_crossentropy

from keras.models import Sequential, Model, load_model
from keras.layers.core import Dense, Flatten
from keras.layers.convolutional import *

from sklearn_.metrics import confusion_matrix
from scipy import misc, ndimage

from matplotlib import pyplot

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

64

from keras.layers import Conv2D, MaxPooling2D, MaxPool2D, Dense, Dropout
, Input, Flatten, Activation
from keras.layers import GlobalMaxPooling2D

from keras.layers.merge import Concatenate
from keras.models import Model

from keras import initializers

#from keras.optimizers import adam v2

from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping

images _dir "Data/images/ "

labels dir "Data/labels/"

model_path = "Models/FinalModel2._h5"

randomstate=42

#tf.config.experimental _run_functions_eagerly(True)
tf.__ version__

#tf.enable _eager_execution()

import warnings

warnings.filterwarnings("ignore®)

import os
import cv2

import tensorflow as tf

from keras.models import Model, load model
from skimage.morphology import label
import pickle

import tensorflow.keras.backend as K

from keras.models import Sequential

from matplotlib import pyplot as plt

from tqdm import tqgdm_notebook

import random

from skimage.io import imread, imshow, imread collection, concatenate_im
ages

from matplotlib import pyplot as plt
import h5py

seed = 56

from keras.models import Model, load model
import tensorflow as tf

from keras.layers import Input

from keras.layers.core import Dropout, Lambda
from keras. layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers.merge import concatenate
from keras import optimizers

from keras.layers import BatchNormalization
from tensorflow.keras.metrics import MeanloU
import keras

65

from matplotlib import pyplot

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D, MaxPool2D, Dense,
Dropout, Input, Flatten, Activation

from keras.layers import GlobalMaxPooling2D

from keras.layers.merge import Concatenate
from keras.models import Model
from keras import initializers

from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping
#Resizing images, if needed

SIZE_X = 512

SIZE_Y = 512

n_classes=4

inputs = Input((512, 512, 3))

convl = Conv2D(16, (3, 3), activation="elu",
kernel_initializer="he_normal®, padding="same®) (inputs)
convl = BatchNormalization() (convl)

convl = Dropout(0.1) (convl)

convl Conv2D(16, (3, 3), activation="elu”,
kernel_initializer="he_normal ", padding="same®") (convl)
convl = BatchNormalization() (convl)

poolingl = MaxPooling2D((2, 2)) (convl)

conv2 = Conv2D(32, (3, 3), activation="elu",
kernel_initializer="he_normal®, padding="same®) (poolingl)
conv2 = BatchNormalization() (conv2)

conv2 = Dropout(0.1) (conv2)

conv2 = Conv2D(32, (3, 3), activation="elu",
kernel_initializer="he_normal®, padding="same®) (conv2)
conv2 = BatchNormalization() (conv2)

pooling2 = MaxPooling2D((2, 2)) (conv2)

conv3 = Conv2D(64, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (pooling2)
conv3 = BatchNormalization() (conv3)

conv3 = Dropout(0.2) (conv3d)

conv3 Conv2D(64, (3, 3), activation="elu-,
kernel_initializer="he_normal ", padding="same®) (conv3)
conv3 = BatchNormalization() (conv3)

pooling3 = MaxPooling2D((2, 2)) (conv3)

conv4 = Conv2D(128, (3, 3), activation="elu-,
kernel_initializer="he_normal®, padding="same®) (pooling3)
conv4 = BatchNormalization() (conv4)

conv4 = Dropout(0.2) (conv4)

conv4 = Conv2D(128, (3, 3), activation="elu”",

66

kernel _initializer="he _normal ", padding="same®") (conv4)
conv4 = BatchNormalization() (conv4)
pooling4 = MaxPooling2D(pool_size=(2, 2)) (conv4)

convs = Conv2D(256, (3, 3), activation="elu”",
kernel_initializer="he_normal®, padding="same®) (pooling4)
conv5 = BatchNormalization() (convb)

conv5 = Dropout(0.3) (convb)

convb = Conv2D(256, (3, 3), activation="elu-,
kernel_initializer="he_normal®, padding="same®) (convb)
conv5 = BatchNormalization() (convb)

upsample6
(convb)

upsample6 = concatenate(Jupsample6, conv4])

convé = Conv2D(128, (3, 3), activation="elu”,

kernel _initializer="he_normal ", padding="same®) (upsample6)

conv6é = BatchNormalization() (conv6)

conv6 = Dropout(0.2) (conv6)

convé = Conv2D(128, (3, 3), activation="elu”,

kernel_initializer="he_normal ", padding="same®) (conv6)

conv6 = BatchNormalization() (conv6)

Conv2DTranspose(128, (2, 2), strides=(2, 2), padding="same-®)

upsample7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding="same®")
(convb)

upsample7 = concatenate(Jupsample7, conv3])

conv7 = Conv2D(64, (3, 3), activation="elu",

kernel _initializer="he_normal ", padding="same®) (upsample7)

conv7 = BatchNormalization() (conv7)

conv7 = Dropout(0.2) (conv7)

conv7 = Conv2D(64, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (conv7)

conv7 = BatchNormalization() (conv7)

upsample8
(conv7)
upsample8 = concatenate(Jupsample8, conv2])

conv8 = Conv2D(32, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (upsample8)
conv8 = BatchNormalization() (conv8)

conv8 = Dropout(0.1) (convd)

conv8 = Conv2D(32, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (conv8)
conv8 = BatchNormalization() (conv8)

Conv2DTranspose(32, (2, 2), strides=(2, 2), padding="same®)

upsample9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding="same")
(convd)

upsample9 = concatenate(Jupsample9, convl], axis=3)

conv9 = Conv2D(16, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (upsample9)

conv9 = BatchNormalization() (conv9)

67

conv9 = Dropout(0.1) (conv9)

conv9 = Conv2D(16, (3, 3), activation="elu",
kernel_initializer="he_normal ", padding="same®) (conv9)
conv9 = BatchNormalization() (conv9)

outputs = Conv2D(n_classes, (1, 1), activation="softmax®) (conv9)

model = Model (inputs=[inputs], outputs=[outputs])
model .summary ()
def createSet(images_dir,masks dir, labels,count):
images list=[]
masks_list=[]
files = os.listdir(images_dir)
n=0
for f in sorted(files):
mask=[]
final_mask=None
iT n==count:
break
it f.endswith(".jpg”):
images_list.append(cv2.imread(images dir + */° + f))
print(f)
n=n+1
final_mask=np.zeros((5612,512))
for IT in labels:
a=None
maskfile=masks dir + */° + If + °/" +
os.path.splitext(f)[0] + ".png™
iT os.path._exists(maskfile):
array=cv2. imread(maskfile,cv2.IMREAD UNCHANGED)

if(len(array.shape)==2):
a=array
else:
a=np.sum(array,axis=2)
a[a>0]=If
final_mask=final_mask+(final_mask==0)*a
masks_list.append(final_mask)
images array = np.asarray(images_ list)
del images_list
masks_array = np.asarray(masks_list)
del masks_list
print(masks_array.dtype)
return images_array.astype(np.uint8),masks_array.astype(np.uint8)
def plotlmage(image):
plt.imshow(image)
plt.show()
labels=os.listdir(labels _dir)

68

images,masks=createSet(images dir,labels dir,labels,1800)
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()

n, h, w = masks.shape

print('masks:",masks.shape)

masks_reshaped = masks.reshape(-1,1)
print('masks_reshaped:* ,masks_reshaped.shape)

print(np.unique(masks_reshaped))

del masks
print('start fiting")

labelencoder.fit(np.unique(masks_reshaped) .reshape(-1,1))
masks_reshaped_encoded = labelencoder.transform(masks_reshaped)
#masks_ reshaped encoded = labelencoder.fit_transform(masks_reshaped)
masks_reshaped_encoded=masks reshaped encoded.astype(np.uint8)
print(masks_reshaped_encoded.dtype)

print(end fiting')
del masks_reshaped

masks_encoded_original_shape = masks_reshaped_encoded.reshape(n, h, w)
del masks_reshaped_encoded

print("'masks_encoded _original_shape.unique:",
np.unique(masks_encoded_original_shape))
print('classes codes:", labelencoder.classes)

from tensorflow.keras.utils import normalize
#images = normalize(images, axis=1)
print('images.shape:", images.shape)

masks_input = np.expand_dims(masks_encoded_original_shape, axis=3)

del masks_encoded_original_shape

#Create a subset of data for quick testing

#Picking 10% for testing and remaining for training

from sklearn.model_selection import train_test split

X1, X test, yl, y test = train_test _split(images, masks_input,
test size = 0.10, random_state = randomstate)
print('X1l.shape:*,X1.shape)

del images

#Further split training data t a smaller subset for quick testing of mod
els

69

X_train, X val, y train, y val = train_test split(X1l, yl,
test_size = 0.2, random_state = randomstate)

del masks_input

#del X do _not_use
#del y do _not_use

print('Class values in the dataset are ... ', np.unique(y_train)) # 0 i
s the background/few unlabeled

y_train.reshape(-1,1)

from tensorflow.keras.utils import to categorical

train_masks cat = to categorical(y_train.reshape(-1,1),
num_classes=n_classes)

y_train_cat = train_masks_cat.reshape((y_train.shape[0],
y_train.shape[1l], y_train.shape[2], n_classes))

del y_train
del train_masks cat

test _masks cat = to_categorical (y_test, num_classes=n_classes)
y_test cat = test _masks_cat.reshape((y_test.shape[0], y_test.shape[1l],
y_test.shape[2], n_classes))

del test masks_cat

val _masks cat = to_categorical(y_val, num classes=n_classes)
y_val _cat = val _masks_cat.reshape((y_val .shape[0], y val.shape[l],
y_val .shape[2], n_classes))

#del y_ val
del val masks cat
from keras import backend as K
def i1ou_coef(y_true, y pred, smooth=1):
y_truel=y true._.numpy()
y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],
y_true_argmax.shape[1l],y_true_argmax.shape[2],1)
y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],
y_pred_argmax.shape[l],y pred_argmax.shape[2],1)
iou=0
for 1 in range(l,n_classes):
y_pred3=y_pred2*(y_pred2==i)
y_true3d=y_ true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3[y_true3>0]=1

70

intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_true3,[1,2,3])+K.sum(y_pred3,[1,2,3])-intersection
iou =iou+K.mean((intersection + smooth) / (union + smooth),

axis=0)

def

return iou/(n_classes-1)

iou_coefl(y_true, y pred, smooth=1):

y_truel=y true._numpy()

y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],

y_true_argmax.shape[1l],y_true_argmax.shape[2],1)

y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],

y_pred_argmax.shape[l],y pred_argmax.shape[2],1)

def

iou=0
for 1 in range(l,2):
y_pred3=y pred2*(y_pred2==i)
y_true3d=y_ true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3[y_true3>0]=1
intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_true3,[1,2,3])+K.sum(y_pred3,[1,2,3])-intersection
iou =iou+K.mean((intersection + smooth) / (union + smooth),axis=0)
return iou/(n_classes-1)

iou_coef2(y_true, y _pred, smooth=1):

y_truel=y true._.numpy()

y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],

y_true_argmax.shape[1l],y_true_argmax.shape[2],1)

y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],

y_pred_argmax.shape[1],y_pred_argmax.shape[2],1)

iou=0
for i in range(2,3):
y_pred3=y_pred2*(y_pred2==i)
y_true3d=y_ true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3[y_true3>0]=1
intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_true3,[1,2,3])+K.sum(y_pred3,[1,2,3])-intersection
iou =iou+K.mean((intersection + smooth) / (union + smooth),

axis=0)

return iou

def i1ou_coef3(y_true, y pred, smooth=1):

y_truel=y true._.numpy()
y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)

71

y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],
y_true_argmax.shape[l],y true argmax.shape[2],1)
y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],
y_pred_argmax.shape[1],y_pred_argmax.shape[2],1)
iou=0
for 1 in range(3,4):
y_pred3=y_ pred2*(y_pred2==i)
y_true3d=y_ true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3[y_true3>0]=1
intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_true3,[1,2,3])+K.sum(y_pred3,[1,2,3])-
intersection
iou =iou+K.mean((intersection + smooth) / (union + smooth),
axis=0)
return iou

def simple_iou_coef(y_true, y pred, smooth=1):
iou=0
for 1 in range(l,n_classes):
y_truel=y true[:,:,:,i]-reshape(y_true.shape[0],y_ true.shape[l],
y_true.shape[2],1) .astype(int)
y_predl=y pred[:,:,:,i].-reshape(y_pred.shape[0],y_ pred.shape[l],
y_pred.shape[2],1) -astype(int)
intersection = K.sum(K.abs(y_truel* y predl), axis=[1,2,3])
union = K.sum(y_truel,[1,2,3])+K.sum(y_predl,[1,2,3])-
intersection
iou =iou+K.mean((intersection + smooth) / (union + smooth),
axis=0)
return iou/(n_classes-1)

def loss(y_true, y pred, smooth=1):
loss=0
for 1 in range(l,y_true.shape[3]):
intersection = K.sum(y_true[:,:,:,i]* vy _pred[:,:,:,i])+ smooth
union = K.sum(y_true[:,:,:,i]) + K.sum(y_pred[:,:,:,1])-
intersection + smooth
loss =loss+ K.mean((intersection + smooth) /7 (union + smooth))
loss = loss / (y_true.shape[3])
return 1-loss

def F1 score(y_true, y pred, smooth=1):
y_truel=y true.numpy()
y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],

72

y_true_argmax.shape[l],y true argmax.shape[2],1)
y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],
y_pred_argmax.shape[l],y pred_argmax.shape[2],1)
F1 score=0
for 1 in range(l,n_classes):
y_pred3=y_pred2*(y_pred2==i)
y_true3d=y_ true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3d[y_true3>0]=1
intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_true3,[1,2,3])+K.sum(y_pred3,[1,2,3])
F1 score =F1_scoretK.mean(2*(intersection + smooth) /
(union + smooth), axis=0)
return F1_score/(n_classes-1)

def Precision(y_true, y pred, smooth=1):
y_truel=y true.numpy()
y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],
y_true_argmax.shape[1l],y_true_argmax.shape[2],1)
y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],
y_pred_argmax.shape[l],y pred_argmax.shape[2],1)
Precision=0
for 1 in range(l,n_classes):
y_pred3=y pred2*(y_pred2==i)
y_true3d=y_true2*(y_true2==i)
y_pred3[y_pred3>0]=1
y_true3[y_true3>0]=1
intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])
union = K.sum(y_pred3,[1,2,3])
Precision =Precision+K.mean((intersection + smooth) /
(union + smooth), axis=0)
return Precision/(n_classes-1)

def Recall(y_true, y pred, smooth=1):
y_truel=y true.numpy()
y_predl=y pred.numpy()
y_true_argmax=np.argmax(y_truel, axis=3).astype(int)
y_pred_argmax=np.argmax(y_predl, axis=3).astype(int)
y_true2=y true_argmax.reshape(y_true_argmax.shape[0],
y_true_argmax.shape[l],y true_argmax.shape[2],1)
y_pred2=y pred_argmax.reshape(y_pred_argmax.shape[0],
y_pred_argmax.shape[1l],y_pred_argmax.shape[2],1)
Recal 1=0
for 1 in range(l,n_classes):
y_pred3=y pred2*(y_pred2==i)
y_true3d=y_true2*(y_true2==i)
y_pred3[y_pred3>0]=1

73

y_true3[y_true3>0]=1

intersection = K.sum(K.abs(y_true3* y pred3), axis=[1,2,3])

union = K.sum(y_true3,[1,2,3])

Recall =Recall+K_.mean((intersection + smooth) / (union + smooth),

axis=0)
return Recall/(n_classes-1)
EPOCHS = 50

LEARNING_RATE = 0.001

BATCH_SIZE = 8

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReducelLROnPI
ateau

from datetime import datetime

checkpointer = ModelCheckpoint(model path,save best only = True,verbose=

Y

Ir_reducer = ReduceLROnPlateau(monitor="val loss",
factor=0.1,
patience=4,
verbose=1,
epsilon=1e-4)

from sklearn.utils import class weight

from tensorflow.keras.optimizers import Adam
opt = Adam(Ir=LEARNING_RATE)

mlOU = tf.keras.metrics.MeanloU(nhum_classes=n_classes)

#model .compile(optimizer=opt, loss="categorical _crossentropy®, metrics=[
"accuracy” ,tf._keras.metrics.-MeanloU(num_classes=n_classes)])
model .compile(run_eagerly=True,optimizer=opt, loss="categorical_crossent
ropy", metrics=["accuracy”,iou_coefl,iou_coef2,iou_coef3,Precision,Recal
1,F1 _score])
#model .summary ()
history = model.fit(X_train, y train_cat,

batch_size = BATCH_SIZE,

verbose=1,

epochs=EPOCHS,

validation_data=(X_test, y test cat),

shuffle=False,

callbacks = [checkpointer, lIr_reducer])

del X _train
del y train_cat
def GenerateMask(Sourceimage,model ,sizex,sizey):
height = Sourceimage.shape[0]
width = Sourceimage.shape[1]
mask = np.zeros((1,height,width))
i=0

74

whille i+sizey < height :
J=0
while j+sizex < width:
image=Sourceimage[i:i+sizey, j:j+sizex,:]
print(image.shape)
image=image.reshape(1,512,512,3)
y_pred=model .predict(image)
y_pred_argmax=np.argmax(y_pred, axis=3)
print("i=",i," - ","j=". 1)
#print(y_pred_argmax.shape)
mask[:,1:i+512,j:j+512]= y _pred_argmax
J=j+sizex
icit+sizey
return mask.astype(np.int8)

image_path ="/content/drive/MyDrive/Data_deeplearning/Multiple RCNN/test
-Jpg”

image=cv2.imread(image_path)

print(image.shape)

mask= GenerateMask(image,model ,S1ZE_X,SIZE_Y)

2. Spatial Analysis Python Toolbox Code

-*- coding: utf-8 -*-
import arcpy

def ImportToMosaic(IndexName,Date,Raster,mosaicdataset):
DateFormatted=Date.strftime("%Y_%m %d")
arcpy.management.AddRastersToMosaicDataset(mosaicdataset, "Raster
Dataset"”,Raster)
arcpy.CalculateStatistics _management(mosaicdataset)
desc = arcpy.Describe(mosaicdataset)
with arcpy.da.Editor(desc.path) as edit:
arcpy.MakeMosaiclLayer_management (mosaicdataset, 'mosaic’)
ep = IndexName + "_" + DateFormatted
Expression = "Name= '"+ ep+""'"
rows=arcpy.UpdateCursor('mosaic\Footprint', Expression)
for r in rows:
r.Date=Date
r.Code=IndexName
rows.updateRow(r)
return

75

def makeMosaic(MosaicDataSet,LayerMosaic,Month,Year):
arcpy.MakeMosaiclLayer_management (MosaicDataSet, LayerMosaic)

Expression = 'EXTRACT(MONTH FROM "Date") = ' + str(Month) + ' AND

EXTRACT(Year FROM "Date") = ' + str(Year)
rows=arcpy.SearchCursor(LayerMosaic + '\Footprint', Expression)
0ID=0

for row in rows
OID=row.OBJECTID
Date=row.Date
break
SelectedRaster=MosaicDataSet + r"\raster.objectid="+str(0ID)
Raster = arcpy.Raster(SelectedRaster,True)
return Raster,Date

def SelectRastersFromMosaic(MosaicDataSet,LayerMosaic,Month,Year):
arcpy.MakeMosaiclLayer_management (MosaicDataSet, LayerMosaic)
Expression = 'EXTRACT(MONTH FROM "Date") = ' + str(Month) + ' AND
EXTRACT(Year FROM "Date") = ' + str(Year)
#tarcpy.AddMessage(Expression)
rows=arcpy.SearchCursor(LayerMosaic + '\Footprint', Expression)
Rasters=[]
RasterNames=[]
for row in rows
Date=row.Date
SelectedRaster=MosaicDataSet +
r"\raster.objectid="+str(row.0BJECTID)
Rasters.append(arcpy.Raster(SelectedRaster, True))
RasterNames.append(row.Code)
return Rasters,RasterNames,Date

class Toolbox(object):
def _init (self):
"""Define the toolbox (the name of the toolbox is the name of the

.pyt file)."""
self.label = "Toolbox"
self.alias = "toolbox"

List of tool classes associated with this toolbox

self.tools =
[ImportSentinelOneDataTool,ImportSentinelTwoDataTool, ImportParcelsTool, ImportE
xtractedLandsDataTool,CreateIndicesTool,CalculatStatisticalIndicesTool,Calcula
tPermanentStatisticalIndicesTool, GenerateSuitabilityScoreTool,FindSuitabilityZ
onesTool]

76

class ImportSentinelOneDataTool(object):
def init (self):
"""Define the tool (tool name is the name of the class).
self.label = "import Sentinell Data"
self.description = "import Sentinel 1 data and convert it to one
raster with multiple bands"”
self.canRunInBackground = False

def getParameterInfo(self):

paraml = arcpy.Parameter(displayName="Sigma 0 -
HV",name="SigmaHV",datatype="DERasterDataset",parameterType="Required",directi
on="Input")

param2 = arcpy.Parameter(displayName="Sigma 0 -
W" ,name="SigmaVV",datatype="DERasterDataset",parameterType="Required",directi
on="Input")

param3 = arcpy.Parameter(displayName="Date of
Image",name="Date",datatype="GPDate", parameterType="Required",direction="Input
")

param4 = arcpy.Parameter(displayName="Target Mosaic
dataset",name="mosaicdataset",datatype="GPMosaiclLayer",parameterType="Required
",direction="Input")

param5 = arcpy.Parameter(displayName="Clipping Feature
Class",name="ClippingFeature"”,datatype="DEFeatureClass",parameterType="0ptiona
1",direction="Input")

paramé = arcpy.Parameter(displayName="Images
Folder",name="OutputFolder",datatype="DEFolder",parameterType="Required",direc
tion="TInput")

params = [paraml,param2,param3,param4,param5,paramé]

return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation."""
return

def execute(self, parameters, messages):
SigmaHV=parameters[0].valueAsText
SigmaVV=parameters[1].valueAsText

77

Date_str=parameters[2].valueAsText
mosaicdataset=parameters[3].valueAsText
ClippingFeature=parameters[4].valueAsText
out_folder=parameters[5].valueAsText
bands=SigmaHV+";"+Sigmavv+";"
arcpy.CompositeBands_management(bands,arcpy.env.workspace + r"\templ")
arcpy.Clip_management(arcpy.env.workspace + r"\templ", "#",
arcpy.env.workspace + r'"\temp2", ClippingFeature, "#", "ClippingGeometry",
"NO_MAINTAIN_EXTENT")
arcpy.Delete_management(arcpy.env.workspace + r'"\templ")
from dateutil import parser
Date = parser.parse(Date_str)
DateFormatted=Date.strftime("%Y_%m %d")
imagepath = out_folder + r"\SentinelOne_ " + DateFormatted + ".tif"
arcpy.CopyRaster_management(arcpy.env.workspace + r"\temp2",imagepath)
arcpy.Delete_management(arcpy.env.workspace + r"\temp2")
arcpy.management.AddRastersToMosaicDataset(mosaicdataset, "Raster
Dataset",imagepath)
arcpy.CalculateStatistics_management (mosaicdataset)
desc = arcpy.Describe(mosaicdataset)
with arcpy.da.Editor(desc.path) as edit:
arcpy.MakeMosaiclLayer_management (mosaicdataset, 'mosaic’)
ep = "SentinelOne_ " + DateFormatted
Expression = "Name= '"+ ep+"'"
rows=arcpy.UpdateCursor('mosaic\Footprint', Expression)
for r in rows:
r.Date=Date
rows.updateRow(r)

return

class ImportSentinelTwoDataTool(object):
def init (self):
"""Define the tool (tool name is the name of the class)."""
self.label = "import Sentinel2 Data"
self.description = "import Sentinel 2 data and convert it to one
raster with multiple bands"”
self.canRunInBackground = False

def getParameterInfo(self):
paraml = arcpy.Parameter(displayName="Band 2 Blue
Image",name="Band2",datatype="DERasterDataset", parameterType="Required",direct
ion="Input")

78

param2 = arcpy.Parameter(displayName="Band 3 Green
Image",name="Band3",datatype="DERasterDataset", parameterType="Required",direct
ion="Input")

param3 = arcpy.Parameter(displayName="Band 4 Red
Image",name="Band4",datatype="DERasterDataset", parameterType="Required",direct
ion="Input")

param4 = arcpy.Parameter(displayName="Band 8 IRed
Image",name="Band8",datatype="DERasterDataset", parameterType="Required",direct
ion="Input")

param8 = arcpy.Parameter(displayName="Date of
Image",name="Date",datatype="GPDate", parameterType="Required",direction="Input
")

param5 = arcpy.Parameter(displayName="Target Mosaic
dataset",name="mosaicdataset",datatype="GPMosaiclLayer",parameterType="Required
",direction="Input")

paramé = arcpy.Parameter(displayName="Clipping Feature
Class",name="ClippingFeature"”,datatype="DEFeatureClass",parameterType="0ptiona
1",direction="Input")

param7 = arcpy.Parameter(displayName="Images
Folder",name="OutputFolder",datatype="DEFolder",parameterType="Required",direc
tion="Input")

params = [paraml,param2,param3,param4,param5,paramé6,param7, params]

return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™"™""
return

def execute(self, parameters, messages):
Band2=parameters[0].valueAsText
Band3=parameters[1].valueAsText
Band4=parameters[2].valueAsText
Band8=parameters[3].valueAsText
mosaicdataset=parameters[4].valueAsText
ClippingFeature=parameters[5].valueAsText
out folder=parameters[6].valueAsText
Date str=parameters[7].valueAsText

79

bands=Band4+"; "+Band3+"; "+Band2+"; "+Band8+" ;"

arcpy.CompositeBands_management(bands,arcpy.env.workspace + r"\templ")

arcpy.Clip_management(arcpy.env.workspace + r"\templ", "#",

arcpy.env.workspace + r"\temp2", ClippingFeature, "#", "ClippingGeometry",

"NO_MAINTAIN_EXTENT")
arcpy.Delete_management(arcpy.env.workspace + r"\templ")
from dateutil import parser
Date = parser.parse(Date_str)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\SentinelTwo " + DateFormatted + ".tif"
arcpy.CopyRaster_management(arcpy.env.workspace + r"\temp2",imagepath)

arcpy.Delete_management(arcpy.env.workspace + r'"\temp2")

arcpy.management.AddRastersToMosaicDataset(mosaicdataset, "Raster

Dataset",imagepath)
arcpy.CalculateStatistics_management (mosaicdataset)
desc = arcpy.Describe(mosaicdataset)
with arcpy.da.Editor(desc.path) as edit:

arcpy.MakeMosaiclLayer_management (mosaicdataset, 'mosaic’)

ep = "SentinelTwo_ " + DateFormatted
Expression = "Name= '"+ ep+"'"
rows=arcpy.UpdateCursor('mosaic\Footprint', Expression)
for r in rows:

r.Date=Date

rows.updateRow(r)

return

class ImportParcelsTool(object):
def __init__ (self):
"""Define the tool (tool name is the name of the class).
self.label = "Import Parcels”
self.description = "Import Parcels from cad file"
self.canRunInBackground = False

def getParameterInfo(self):
paraml=arcpy.Parameter(displayName="Parcels Autocad
File",name="ParcelsCad",datatype="CAD Drawing
Dataset",parameterType="Required"”,direction="Input")

param2=arcpy.Parameter(displayName="VillageId",name="VillageId",dataty

pe="Long",parameterType="Required",direction="Input")
param3=arcpy.Parameter(displayName="Parcels Feature

Class",name="ParcelFeatureClass",datatype="DEFeatureClass",parameterType="Requ

ired",direction="Input")
params = [paraml,param2,param3]
return params

def islLicensed(self):

80

"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
return

def execute(self, parameters, messages):
ParcelsCad=parameters[0].valueAsText
VillageId=parameters[1].valueAsText
ParcelFeatureClass=parameters[2].valueAsText
Lines=ParcelsCad + "\\Polyline"
Annotations=ParcelsCad + "\\Annotation"
arcpy.CopyFeatures_management(Lines,arcpy.env.workspace+"\\parclesline
s")
arcpy.CopyFeatures_management (Annotations,arcpy.env.workspace+"\\parce
lsanno")
sr = arcpy.SpatialReference(4326)
arcpy.DefineProjection_management(arcpy.env.workspace+"\\parcleslines"
] SP)
arcpy.DefineProjection_management(arcpy.env.workspace+"\\parcelsanno",
sr)
arcpy.FeatureToPolygon_management(arcpy.env.workspace+"\\parcleslines"
,arcpy.env.workspace+"\\parcelspolygon")
arcpy.SpatialJoin_analysis(arcpy.env.workspace+"\\parcelspolygon",arcp
y.env.workspace+"\\parcelsanno",arcpy.env.workspace+"\\"
"completedparcels", "JOIN_ONE_TO ONE","#","#","COMPLETELY_CONTAINS")
dropFields=arcpy.ListFields(arcpy.env.workspace+"\\completedparcels™)
for f in dropFields:
if f.name != "Text" and f.name != "FID" and f.name != "Shape" and
f.name != "OBJECTID" and f.name != "Shape_Length" and f.name != "Shape_ Area"
arcpy.DeleteField management(arcpy.env.workspace+"\\completedp
arcels" , f.name)
arcpy.AddField management (arcpy.env.workspace+"\\completedparcels","Vi
1lageId","LONG")
arcpy.CalculateField management(arcpy.env.workspace+"\\completedparcel
s" ,"VillageId",villageld)
arcpy.AddField_management (arcpy.env.workspace+"\\completedparcels", "Nu
mber","Text")
arcpy.CalculateField_management(arcpy.env.workspace+"\\completedparcel
s", "Number", "!Text!","PYTHON3")
arcpy.DeleteField management(arcpy.env.workspace+"\\completedparcels",
"Text")

81

arcpy.Delete _management(arcpy.env.workspace+"\\parcleslines")
arcpy.Delete_management(arcpy.env.workspace+"\\parcelspolygon")
arcpy.Delete_management(arcpy.env.workspace+"\\parcelsanno")
arcpy.management.Append(arcpy.env.workspace+"\\completedparcels",Parce

1FeatureClass)
arcpy.Delete_management(arcpy.env.workspace+"\\completedparcels")
return

class ImportExtractedLandsDataTool(object):
def _init (self):
"""Define the tool (tool name is the name of the class).
self.label = "Import Extracted Lands"
self.description = "import Extracted Lands"
self.canRunInBackground = False

def getParameterInfo(self):

paraml = arcpy.Parameter(displayName="Extracted
Lands",name="Lands",datatype="DERasterDataset", parameterType="Required",direct
ion="Input")

param5 = arcpy.Parameter(displayName="Date of
Image",name="Date",datatype="GPDate",parameterType="Required"”,direction="Input
")

param2 = arcpy.Parameter(displayName="Target Mosaic
dataset",name="mosaicdataset",datatype="GPMosaiclLayer", parameterType="Required
",direction="Input")

param3 = arcpy.Parameter(displayName="Clipping Feature
Class",name="ClippingFeature",datatype="DEFeatureClass",parameterType="0ptiona
1",direction="Input")

paramd = arcpy.Parameter(displayName="Images
Folder",name="OutputFolder",datatype="DEFolder",parameterType="Required",direc
tion="Input")

params = [paraml,param2,param3,param4,param5]

return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™"""

82

return

def execute(self, parameters, messages):
Lands=parameters[0].valueAsText
mosaicdataset=parameters[1l].valueAsText
ClippingFeature=parameters[2].valueAsText
out folder=parameters[3].valueAsText
Date_str=parameters[4].valueAsText
from dateutil import parser
Date = parser.parse(Date_str)
DateFormatted=Date.strftime("%Y_%m %d")
imagepath = out_folder + r"\ExtractedLands_
arcpy.CopyRaster_management(Lands, imagepath)
arcpy.management.AddRastersToMosaicDataset(mosaicdataset, "Raster
Dataset",imagepath)
desc = arcpy.Describe(mosaicdataset)
with arcpy.da.Editor(desc.path) as edit:
arcpy.MakeMosaiclLayer_management (mosaicdataset, 'mosaic’)
ep = "ExtractedLands_" + DateFormatted
Expression = "Name= '"+ ep+"'"
rows=arcpy.UpdateCursor('mosaic\Footprint', Expression)
for r in rows:
r.Date=Date
rows.updateRow(r)

+ DateFormatted + ".tif"

return

class CreateIndicesTool(object):
def _init (self):
"""Define the tool (tool name is the name of the class).
self.label = "Create Indices”
self.description = "Create Indices and import them to a mosaic
dataset™
self.canRunInBackground = False

def getParameterInfo(self):

paraml = arcpy.Parameter(displayName="Sentinel 1
dataset",name="SentinelOne",datatype="GPMosaicLayer",parameterType="Required",
direction="Input")

param2 = arcpy.Parameter(displayName="Sentinel 2
dataset",name="SentinelTwo",datatype="GPMosaicLayer",parameterType="Required",
direction="Input")

param3 =
arcpy.Parameter(displayName="Month",name="Month",datatype="GPLong",parameterTy
pe="Required",direction="Input")

param3.filter.type = "Range"

param3.filter.list = [1, 12]

83

param4 =
arcpy .Parameter(displayName="Year",name="Year",datatype="GPLong",parameterType
="Required",direction="Input")

param4.filter.type = "Range"

param4.filter.list = [2016, 2100]

param5 = arcpy.Parameter(displayName="Target Indices Mosaic
dataset"”,name="mosaicdataset"”,datatype="GPMosaiclLayer", parameterType="Required
",direction="Input")

paramé = arcpy.Parameter(displayName="Images
Folder",name="OutputFolder",datatype="DEFolder",parameterType="Required",direc
tion="Input")

#tparam3 = arcpy.Parameter(displayName="Elevation
DEM", name="DEM" ,datatype="DERasterDataset",parameterType="Required",direction=
"Input")

#param4 =
arcpy.Parameter(displayName="Slope",name="Slope",datatype="DERasterDataset",pa
rameterType="Required",direction="Input")

#param5 = arcpy.Parameter(displayName="Distance From
Roads",name="DistRoad",datatype="DERasterDataset",parameterType="Required",dir
ection="Input")

params = [paraml,param2,param3,param4,param5,paramé]
return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™"™""
return

def execute(self, parameters, messages):
SentinelOne=parameters[0].valueAsText
SentinelTwo=parameters[1].valueAsText
Month=parameters[2].valueAsText
Year=parameters[3].valueAsText

84

mosaicdataset=parameters[4].valueAsText
out folder=parameters[5].valueAsText

SentinelOneRaster,Date=makeMosaic(SentinelOne, 'mosaic’',Month,Year)

VH = arcpy.ia.ExtractBand(SentinelOneRaster, [1])

W = arcpy.ia.ExtractBand(SentinelOneRaster, [2])

Index="RVI"

Expression="(4*VH)/(VH+W)"

output = arcpy.ia.RasterCalculator([VH,W],["VH","W"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")
imagepath = out_folder + r"\\" + Index +
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

" " + DateFormatted + ".tif"

SentinelTwoRaster,Date=makeMosaic(SentinelTwo, 'mosaic’',Month,Year)
R = arcpy.ia.ExtractBand(SentinelTwoRaster, [1])
G = arcpy.ia.ExtractBand(SentinelTwoRaster, [2])
B = arcpy.ia.ExtractBand(SentinelTwoRaster, [2])
IR = arcpy.ia.ExtractBand(SentinelTwoRaster, [2])

Index="NDVI"

Expression="'(IR-R)/(IR+R)"

output = arcpy.ia.RasterCalculator([IR,R],["IR","R"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + " " + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="ARVI"

Expression="'(IR-2*R+B)/(IR+2*R-B)"

output = arcpy.ia.RasterCalculator([IR,R,B],["IR","R","B"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="MSAVI"

Expression="0.5*((2*IR+1)-SquareRoot (Square(2*IR+1)-(8*IR-R)))"

output = arcpy.ia.RasterCalculator([IR,R],["IR","R"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

85

Index="EVI"

Expression="2.5*(IR-R)/(IR+6*R+7.5%*B+1)"

output = arcpy.ia.RasterCalculator([IR,R,B],["IR","R","B"],Expression)
DateFormatted=Date.strftime("%Y_%m_%d")

imagepath = out_folder + r"\\" + Index + " " + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="CIG"

Expression="(IR/G)-1"

output = arcpy.ia.RasterCalculator([IR,G],["IR","G"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="GNDVI"

Expression="(IR-G)/(IR+G)"

output = arcpy.ia.RasterCalculator([IR,G],["IR","G"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="IO0I"

Expression="'R/B'

output = arcpy.ia.RasterCalculator([R,B],["R","B"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

Index="SR"

Expression="IR/R'

output = arcpy.ia.RasterCalculator([IR,R],["IR","R"],Expression)
DateFormatted=Date.strftime("%Y_%m %d")

imagepath = out_folder + r"\\" + Index + "_" + DateFormatted + ".tif"
output.save(imagepath)
ImportToMosaic(Index,Date,imagepath,mosaicdataset)

return

class CalculatStatisticalIndicesTool(object):
def __init__ (self):
"""Define the tool (tool name is the name of the class).

86

self.label = "Calculate Statistical Indices"”

self.description = "Calculate Statistical Indices and import them to
the Statistical Indices table"

self.canRunInBackground = False

def getParameterInfo(self):

paraml = arcpy.Parameter(displayName="Unexploited
Lands",name="UnexploitedLands",datatype="DERasterDataset", parameterType="Requi
red",direction="Input")

param2 = arcpy.Parameter(displayName="Exploited
Lands",name="ExploitedLands",datatype="DERasterDataset",parameterType="Require
d",direction="Input")

param3 = arcpy.Parameter(displayName="Indices
Table",name="IndicesTable",datatype="DETable",parameterType="Required",directi
on="Input")

param4 =
arcpy.Parameter(displayName="Month",name="Month",datatype="GPLong",parameterTy
pe="Required",direction="Input")

param4.filter.type = "Range"

param4.filter.list = [1, 12]

param5 =
arcpy.Parameter(displayName="Year",name="Year",datatype="GPLong",parameterType
="Required",direction="Input")

param5.filter.type = "Range"

param5.filter.list = [2016, 2100]

paramé = arcpy.Parameter(displayName="Indices Mosaic
dataset"”,name="mosaicdataset"”,datatype="GPMosaiclLayer", parameterType="Required
",direction="Input")

param7 = arcpy.Parameter(displayName="Parcels Feature
Class",name="Parcels",datatype="DEFeatureClass",parameterType="Required",direc
tion="Input")

#param3 = arcpy.Parameter(displayName="Elevation
DEM", name="DEM" ,datatype="DERasterDataset",parameterType="Required",direction=
"Input")

#param4 =
arcpy.Parameter (displayName="Slope",name="Slope",datatype="DERasterDataset",pa
rameterType="Required",direction="Input")

#param5 = arcpy.Parameter(displayName="Distance From
Roads",name="DistRoad",datatype="DERasterDataset",parameterType="Required",dir
ection="Input")

params = [paraml,param2,param3,param4,param5,param6,param?]
return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

87

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™"™""
return

def execute(self, parameters, messages):
UnexploitedLands=parameters[0].valueAsText
ExploitedLands=parameters[1].valueAsText
IndicesTable=parameters[2].valueAsText
Month=parameters[3].valueAsText
Year=parameters[4].valueAsText
IndicesMosaicSataset=parameters[5].valueAsText
Parcels=parameters[6].valueAsText

#tLandsRaster,Date=makeMosaic(Lands, 'mosaic',Month,Year)
#Expression="Con((L==2))"

#outputlLands = arcpy.ia.RasterCalculator([Lands],["L"],Expression)
#outputLands = arcpy.sa.Con(Lands,1,0,"VALUE = 2")

IndexRasters,Names,Date=SelectRastersFromMosaic(IndicesMosaicSataset, '
mosaic',Month,Year)
for indexRaster,Name in zip(IndexRasters,Names) :
arcpy.AddMessage(Name)
Expression="L*1i'
outputl =
arcpy.ia.RasterCalculator([indexRaster,UnexploitedLands],["L","i"],Expression)
output2 =
arcpy.ia.RasterCalculator([indexRaster,ExploitedLands],["L","i"],Expression)
DateFormatted=Date.strftime("%Y_%m_ %d")

arcpy.AddMessage("Unexploited Areal")

arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",outputl,arcpy.env.workspace + r"\tempTablel", "DATA", "MIN_MAX_MEAN")

arcpy.AddMessage("Unexploited Area2")

88

Searchrows=arcpy.SearchCursor(arcpy.env.workspace +
r"\tempTablel")
row_values=[]
for row in Searchrows
ParcelID=row.ID
Min=row.Min
Mean=row.Mean
Max=row .Max
row_values.append((ParcelID,Date, 3, Name,Min,Mean,Max))
cursor = arcpy.da.InsertCursor(IndicesTable,['ParcellD’,
'‘Date', 'Class', 'Index', 'Min', 'Mean"', '"Max'])
for row in row_values:
cursor.insertRow(row)
del cursor

arcpy.AddMessage("Exploited Areal)
arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",output2,arcpy.env.workspace + r"\tempTable2", "DATA", "MIN_MAX_MEAN")
arcpy.AddMessage("Exploited Area2")
Searchrows=arcpy.SearchCursor(arcpy.env.workspace +
r"\tempTable2")
row_values=[]
for row in Searchrows
ParcelID=row.ID
Min=row.Min
Mean=row.Mean
Max=row.Max
row_values.append((ParcelID,Date,2,Name,Min,Mean,Max))
cursor = arcpy.da.InsertCursor(IndicesTable,['ParcellD’',
'Date', 'Class', 'Index', 'Min', "Mean"', "Max'])
for row in row_values:
cursor.insertRow(row)
del cursor
arcpy.management.Delete(arcpy.env.workspace + r"\tempTablel")
arcpy.management.Delete(arcpy.env.workspace + r"\tempTable2")

return

class CalculatPermanentStatisticalIndicesTool(object):
def _init (self):
"""Define the tool (tool name is the name of the class)."""
self.label = "Calculate Permanent Statistical Indices"”
self.description = "Calculate Permanent Statistical Indices and import
them to the Permanent Statistical Indices table™
self.canRunInBackground = False

def getParameterInfo(self):
89

paraml = arcpy.Parameter(displayName="Unexploited
Lands",name="UnexploitedLands",datatype="DERasterDataset", parameterType="Requi
red",direction="Input")

param2 = arcpy.Parameter(displayName="Exploited
Lands",name="ExploitedLands",datatype="DERasterDataset",parameterType="Require
d",direction="Input")

param3 = arcpy.Parameter(displayName="Index
Name",name="IndexName",datatype="GPString",parameterType="Required",direction=
"Input")

paramd = arcpy.Parameter(displayName="Index
Raster",name="IndexRaster",datatype="DERasterDataset",parameterType="Required"
,direction="Input")

param5 = arcpy.Parameter(displayName="Permanent Indices
Table",name="PermanentIndicesTable",datatype="DETable", parameterType="Required
",direction="Input")

paramé = arcpy.Parameter(displayName="Parcels Feature
Class",name="Parcels",datatype="DEFeatureClass",parameterType="Required",direc
tion="Input")

params = [paraml,param2,param3,param4,param5,paramé]
return params

def islLicensed(self):
"""Set whether tool is licensed to execute.
return True

def updateParameters(self, parameters):
"""Modify the values and properties of parameters before internal
validation is performed. This method is called whenever a parameter
has been changed."""
return

def updateMessages(self, parameters):
"""Modify the messages created by internal validation for each tool
parameter. This method is called after internal validation.™"™""
return

def execute(self, parameters, messages):
UnexploitedLands=parameters[0].valueAsText
ExploitedLands=parameters[1].valueAsText
IndexName=parameters[2].valueAsText
IndexRaster=parameters[3].valueAsText
IndicesTable=parameters[4].valueAsText

90

Parcels=parameters[5].valueAsText

Expression="L*i"
outputl =
arcpy.ia.RasterCalculator([IndexRaster,UnexploitedLands],["L","i"],Expression)
output2 =
arcpy.ia.RasterCalculator([IndexRaster,ExploitedLands],["L","i"],Expression)
arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",outputl,arcpy.env.workspace + r"\tempTablel", "DATA", "MIN_MAX_MEAN")
Searchrows=arcpy.SearchCursor(arcpy.env.workspace + r"\tempTablel")
row_values=[]
for row in Searchrows
ParcelID=row.ID
Min=row.Min
Mean=row.Mean
Max=row .Max
row_values.append((ParcellD, 3, IndexName,Min,,Mean,Max))
cursor =
arcpy.da.InsertCursor(IndicesTable,['ParcelID', 'Class', 'Index"', 'Min', "Mean','M
ax'])
for row in row_values:
cursor.insertRow(row)
del cursor

arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",output2,arcpy.env.workspace + r"\tempTable2", "DATA", "MIN_MAX_ MEAN")
Searchrows=arcpy.SearchCursor(arcpy.env.workspace + r"\tempTable2")
row_values=[]
for row in Searchrows
ParcelID=row.ID
Min=row.Min
Mean=row.Mean
Max=row .Max
row_values.append((ParcellD, 2,IndexName,Min,Mean,Max))
cursor =
arcpy.da.InsertCursor(IndicesTable,['ParcelID', 'Class', 'Index"', 'Min', "Mean','M
ax'])
for row in row_values:
cursor.insertRow(row)
del cursor
arcpy.management.Delete(arcpy.env.workspace + r"\tempTablel")
arcpy.management.Delete(arcpy.env.workspace + r"\tempTable2")

return

91

class GenerateSuitabilityScoreTool(object):
def init (self):
"""Define the tool (tool name is the name of the class).
self.label = "Generate Suitability Score"
self.description = "Calculate Suitability Score by merging multiple
rasters using weigthed suitability calculation"
self.canRunInBackground = False

def getParameterInfo(self):

Define parameter definitions

paraml = arcpy.Parameter(displayName = "Selected records",name =
"value_table",datatype = "GPValueTable",parameterType =
"Optional"”,direction="Input")

paraml.columns =([["DERasterDataset", "Raster Dataset"],
["GPLong","Percentage"],["GPBoolean", "Inverse Index"]])

param2 = arcpy.Parameter(displayName="Min
Value",name="Min",datatype="GPLong",parameterType="Required",direction="Input"
)

param3 = arcpy.Parameter(displayName="Max
Value",name="Max",datatype="GPLong",parameterType="Required",direction="Input"
)

param4 = arcpy.Parameter(displayName="Suitability
Raster",name="Output",datatype="DERasterDataset",parameterType="Required",dire
ction="Output")

param5 = arcpy.Parameter(displayName="Parcels Feature
Class",name="Parcels",datatype="DEFeatureClass",parameterType="0Optional",direc
tion="Input")

paramé = arcpy.Parameter(displayName="Suitable
Parcels",name="SParcels",datatype="DEFeatureClass", parameterType="0Optional"”,di
rection="Output")

params = [paraml,param2,param3,paramd4,param5,paramé]

return params

def islLicensed(self):

Set whether tool is licensed to execute.
return True
def updateParameters(self, parameters):

Modify the values and properties of parameters before internal

validation is performed. This method is called whenever a parameter

92

)

def

def

has been changed."""
return

updateMessages(self, parameters):

Modify the messages created by internal validation for each tool

parameter. This method is called after internal validation.™"™""

p=0

for i in range(©,len(parameters[0].values)):
p=p+parameters[0].values[i][1]

if p != 100:

parameters[0].setErrorMessage("Sum of Percentages should be 100")

return
execute(self, parameters, messages):

Min=parameters[1].value
Max=parameters[2].value
Output=parameters[3].valueAsText
Parcels=parameters[4].valueAsText
OutputParcels=parameters[5].valueAsText
outputs=[]
rasters=[]
exp=""
for i in range(0,len(parameters[0].values)):
raster = arcpy.Raster(str(parameters[0].values[i][@]))
p=parameters[0].values[i][1]
min=raster.minimum
max=raster.maximum
if min==max:

if min<o:
max=0
else:
min=0
Expression="((R-{0})/({1}-{0}))*({3}-{2})'.format(min,max,Min,Max)
if (str(parameters[0].values[i][2]) == "True") :

Expression=str(Max) + "-(" + Expression + ")"
outputs.append(arcpy.ia.RasterCalculator([raster],["R"],Expression

rasters.append("R"+str(i))
exp=exp+'{0}*{1}+"'.format ("R"+str(i),p)
exp="(" + exp[:-1] + ")/100"
final=arcpy.ia.RasterCalculator(outputs,rasters,exp)
final.save(Output)

93

if Parcels !=
arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",Output,arcpy.env.workspace + r"\tempTablel", "DATA", "MEAN")
arcpy.AddField management(Parcels, "Mean", "DOUBLE")
arcpy.MakeTableView management(arcpy.env.workspace +
r"\tempTablel"”, "table")
arcpy.MakeFeatureLayer_management(Parcels, "parcels")
arcpy.AddJoin_management("parcels”,"ID", "table", "ID")
arcpy.CalculateField_management("parcels", "parcels.Mean",
"IltempTablel .MEAN!","PYTHON")
arcpy.Delete_management(arcpy.env.workspace + r"\tempTablel")
return

class FindSuitabilityZonesTool(object):
def init (self):
"""Define the tool (tool name is the name of the class).
self.label = "Find Suitability Zone"
self.description = "Find Suitability Zone by merging multiple rasters
using Binary suitability calculation"
self.canRunInBackground = False

def getParameterInfo(self):

Define parameter definitions

paraml = arcpy.Parameter(displayName = "Selected records",name =
"value_table",datatype = "GPValueTable",parameterType =
"Optional"”,direction="Input")

paraml.columns =([["DERasterDataset"”, "Raster Dataset"],
["GPDouble", "Min"], ["GPDouble", "Max"]])

param2 = arcpy.Parameter(displayName="Suitability
Raster",name="Output",datatype="DERasterDataset",parameterType="Required",dire
ction="0Output")

param3 = arcpy.Parameter(displayName="Parcels Feature
Class",name="Parcels",datatype="DEFeatureClass",parameterType="0Optional",direc
tion="Input")

param4 = arcpy.Parameter(displayName="Suitable
Parcels",name="SParcels",datatype="DEFeatureClass",parameterType="Optional",di
rection="Output")

params = [paraml,param2,param3,paramé]

return params
def islLicensed(self):

"""Set whether tool is licensed to execute.
return True

94

def updateParameters(self, parameters):
return

def updateMessages(self, parameters):

Modify the messages created by internal validation for each tool

parameter. This method is called after internal validation.
return

def execute(self, parameters, messages):

Output=parameters[1].valueAsText
Parcels=parameters[2].valueAsText
OutputParcels=parameters[3].valueAsText
outputs=[]
rasters=[]
exp=""
for i in range(©@,len(parameters[0].values)):
raster = arcpy.Raster(str(parameters[0].values[i][@]))
min=parameters[0].values[i][1]
max=parameters[0].values[i][2]
outputs.append(arcpy.sa.Con(((raster >= min) & (raster <= max)),
1, 0))
rasters.append("R"+str(i))
exp=exp+'{0}*"' .format ("R"+str(i))
arcpy.AddMessage(exp)
exp=exp[:-1]
final=arcpy.ia.RasterCalculator(outputs,rasters,exp)
final.save(Output)
if Parcels != '":
arcpy.sa.ZonalStatisticsAsTable(Parcels,
"ID",Output,arcpy.env.workspace + r"\tempTablel", "DATA", "MEAN")
arcpy.AddField_management (Parcels, "Mean", "DOUBLE")
arcpy.MakeTableView_management(arcpy.env.workspace +
r"\tempTablel"”, "table")
arcpy.MakeFeatureLayer_management(Parcels, "parcels")
arcpy.AddJoin_management("parcels","ID", "table", "ID")
arcpy.management.SelectLayerByAttribute("parcels"”,
"NEW_SELECTION", "tempTablel.MEAN > 0.9")
arcpy.conversion.FeatureClassToFeatureClass("parcels”,
arcpy.env.workspace, "Result")
arcpy.Delete_management(arcpy.env.workspace + r"\tempTablel")
return

95

	ACKNOWLEDGMENTS
	ABSTRACT
	INTRODUCTION
	1. Study Zone

	Lands Extracting: Deep Learning Model
	1. Overview
	2. Data
	2.1. Data Preprocessing
	2.1.1. Data Cleaning
	2.1.2. Data Labeling
	2.1.3. Data Exporting
	2.1.4. Data Preparing
	2.1.5. Data Splitting
	2.1.6. Data Binarize

	3. Model Architecture
	3.1. Overview
	3.2. Layers
	3.3. Optimizer
	3.4. Loss Function
	3.5. Hyper parameters
	3.5.1. Learning Rate
	3.5.2. Batch size

	3.6. Implementation
	3.6.1. Language
	3.6.2. Library
	3.6.3. Device

	4. Result and Evaluation
	4.1. Metrics
	4.2. Model Evaluation
	4.2.1. Training and testing
	4.2.2. Validation

	4.3. Result

	Data Management
	1. Overview
	2. Source of data
	3. Import and preprocessing Data
	3.1. Import directly
	3.2. Import Parcels
	3.3. Import Sentinel-1 Images
	3.4. Import Sentinel-2 Images

	4. Data extraction
	4.1. Slope layer
	4.2. Roads Closeness
	4.3. Create Indices
	4.3.1. Radar Vegetation Index (RVI)
	4.3.2. Radar Vegetation Index (NDVI)
	4.3.3. Atmospherically Resistant Vegetation Index (ARVI)
	4.3.4. Modified Soil-Adjusted Vegetation Index (MSAVI)
	4.3.5. Enhanced Vegetation Index (EVI)
	4.3.6. Enhanced Vegetation Index (CIG)
	4.3.7. Green Normalized Difference Vegetation Index (GNDVI)
	4.3.8. Enhanced Vegetation Index (GNDVI)

	Spatial Analysis Models
	1. Overview
	2. Merge the vector data
	3. Create permanent statistical indices
	4. Create statistical indices
	5. Suitability models
	5.1. Find Suitability Zones Tool
	5.2. Generate Suitability Scores

	Monitoring and reporting
	1. Overview
	2. The Dashboards
	2.1. Lands Exploitation Dashboard
	2.2. Lands Data Dashboard
	2.3. Soil Data Dashboard
	2.4. Exploited Lands Analysis Dashboard

	Conclusion
	Bibliography
	Appendix
	1. Deep Learning Model Code
	2. Spatial Analysis Python Toolbox Code

